# [1]刘英伟,张洋.变径直管氧浓差腐蚀数值分析[J].东南大学学报(自然科学版),2020,50(3):507-515.[doi:10.3969/j.issn.1001-0505.2020.03.013] 　Liu Yingwei,Zhang Yang.Numerical analysis on differential concentration corrosion of variable diameter straight pipe[J].Journal of Southeast University (Natural Science Edition),2020,50(3):507-515.[doi:10.3969/j.issn.1001-0505.2020.03.013] 点击复制 变径直管氧浓差腐蚀数值分析() 分享到： var jiathis_config = { data_track_clickback: true };

50

2020年第3期

507-515

2020-05-20

## 文章信息/Info

Title:
Numerical analysis on differential concentration corrosion of variable diameter straight pipe

Author(s):
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Keywords:

TG171
DOI:
10.3969/j.issn.1001-0505.2020.03.013

Abstract:
A new two-dimensional differential concentration corrosion model was proposed based on one-dimensional model, considering fluid flow in a variable diameter pipeline as a study object. The model was solved by the numerial method. Results show that when the differential concentration corrosion is not taken into account, the calculated corrosion potential and the corrosion current of the parts on the pipe wall are higher and there exists a high oxygen concentration near them in the pipe, and vice versa. However, when considering the concentration corrosion in the simulation,the parts with higher corrosion potential can produce the anode polarization, causing the decrease of the corrosion rate.Similarly,the cathode polarization can occur on the parts with lower corrosion potential, increasing the corrosion rate and the current.Based on it the corrosion rate of each point can be accurately predicted and the mechanism of the concentration corrosion is preliminarily revealed, that is, the mechanism has a depolarization effect. Thus,the corrosion potential and the current in the corrosion area have a trend of homogenization.

## 参考文献/References:

[1] Evants U R.The corrosion of metals[M].London:Arnold Press,1926:93-95.
[2] Matsumura M.A case study of a pipe line burst in the Mihama nuclear power plant[J].Materials and Corrosion,2006,57(11):872-882.DOI:10.1002/maco.200503971.
[3] Zhang G A,Zeng L,Huang H L,et al.A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation[J].Corrosion Science,2013,77:334-341.DOI:10.1016/j.corsci.2013.08.022.
[4] 苏方腾.低合金钢在海水中氧浓差腐蚀电流的计算[J].中国腐蚀与防护学报,1981,1(1):25-36.
Su F T.Calculation of the corrosion current of the oxygen concentration cell of low alloy steel in sea water[J].Journal of Chinese Society for Corrosion and Protection,1981,1(1):25-36.(in Chinese)
[5] 刘焱,伍远辉,罗宿星.Q235钢在污染土壤中的氧浓差宏电池腐蚀[J].腐蚀与防护,2008,29(8):438-441.
Liu Y,Wu Y H,Luo S X.Macrocell corrosion of Q235 steel in polluted soils due to the difference of oxygen concentration[J].Corrosion & Protection,2008,29(8):438-441.(in Chinese)
[6] 谢建辉,何积铨,吴荫顺.A3钢的氧浓差宏电池腐蚀作用的研究[J].北京科技大学学报,1994,16(S1):59-63.DOI:10.13374/j.issn1001-053x.1994.s1.012.
Xie J H,He J Q,Wu Y S.Investigation on oxygen concentration difference macrocell corrosion for steel A3[J].Journal of University of Science and Technology Beijing,1994,16(S1):59-63.DOI:10.13374/j.issn1001-053x.1994.s1.012. (in Chinese)
[7] 郭津年,黄亚敏,林连进,等.低合金钢在海水中氧浓差腐蚀的研究[J].中国腐蚀与防护学报,1982,2(1):59-66.
Guo J L,Huang Y M,Lin L Z, et al.The study of the oxygen concentration cell corrosion of low alloy steel in sea water[J].Journal of Chinese Society for Corrosion and Protection,1982,2(1):59-66.(:n Chinese)
[8] de Gruyter J,Mertens S,Temmerman E.Corrosion due to differential aeration reconsidered[J].Journal of Electroanalytical Chemistry,2001,506(1):61-63.DOI:10.1016/s0022-0728(01)00452-1.
[9] Kuznetsov V,Estrada-Vargas A,Maljusch A,et al.Kinetic passivation effect of localized differential aeration on brass[J].Chem Plus Chem,2016,81(1):2.DOI:10.1002/cplu.201600014.
[10] Akkouche R,Rémazeilles C,Jeannin M,et al.Influence of soil moisture on the corrosion processes of carbon steel in artificial soil:Active area and differential aeration cells[J].Electrochimica Acta,2016,213:698-708.DOI:10.1016/j.electacta.2016.07.163.
[11] Otero E,González J,Chico B,et al.Measure of the driving forces of underfilm differential contamination cells and differential aeration cells[J].Progress in Organic Coatings,2002,45(4):441-447.DOI:10.1016/s0300-9440(02)00148-0.
[12] Msallamovás,Novák P,Kouˇ/ril M,et al.The differential aeration cell and the corrosion paradox[J].Materials and Corrosion,2015,66(5):498-503.DOI:10.1002/maco.201307446.
[13] Martins J I,Nunes M C.Reconsidering differential aeration cells[J].Electrochimica Acta,2006,52(2):552-559.DOI:10.1016/j.electacta.2006.05.056.
[14] 陆晓峰,朱晓磊,凌祥.一种预测异径管流动加速腐蚀速率的新模型[J].中国腐蚀与防护学报,2011,31(6):431-435,440.
Lu X F,Zhu X L,Ling X.A novel model for predicting flow accelerated corrosion rate in reducer[J].Journal of Chinese Society for Corrosion and Protection,2011,31(6):431-435,440.(in Chinese)
[15] Zhu X L,Lu X F,Ling X.A novel method to determine the flow accelerated corrosion rate in the elbow[J].Materials and Corrosion,2013,64(6):486-492.DOI:10.1002/maco.201106345.
[16] Song G L.Potential and current distributions of one-dimensional galvanic corrosion systems[J].Corrosion Science,2010,52(2):455-480.DOI:10.1016/j.corsci.2009.10.003.
[17] Floyd T L,Buchla D M.电路、器件及应用[M].于歆杰,译.北京:清华大学出版社,2014:171-172.
[18] Chakraborty R,Manna J S,Saha P.Development and relative comparison of polypyrrole-calcium phosphate composite coatings with differential concentration of chlorophyll functionalized polymer particle achieved through pulsed electro deposition[J].Surface and Coatings Technology,2019,363:221-235.DOI:10.1016/j.surfcoat.2019.02.025.
[19] Saraby-Reintjes A.The differential aeration cell[J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1972,37(1):357-360.DOI:10.1016/s0022-0728(72)80240-7.
[20] Hamann C H,Hamnett A,Vielstich W.Electrochemistry[M].Beijing:Chemistry Industry Press,2010:61-62.