参考文献/References:
[1] 朱宝山. 燃煤锅炉大气污染物净化技术手册 [M]. 北京: 中国电力出版社, 2016: 23-27.
[2] Liu F, Zhang Q,van der A R J, et al. Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories[J]. Environmental Research Letters, 2016, 11(11): 114002. DOI:10.1088/1748-9326/11/11/114002.
[3] Liu X W, Xu Y S, Zeng X P, et al. Field measurements on the emission and removal of PM2.5from coal-fired power stations: 1. Case study for a 1000 MW ultrasupercritical utility boiler[J]. Energy & Fuels, 2016, 30(8): 6547-6554. DOI:10.1021/acs.energyfuels.6b00423.
[4] Xu Y S, Liu X W, Cui J, et al. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 4. PM removal performance of wet electrostatic precipitators[J]. Energy & Fuels, 2016, 30(9): 7465-7473. DOI:10.1021/acs.energyfuels.6b00426.
[5] Pan D P, Wu H, Yang L J. Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process[J]. Journal of Environmental Sciences, 2017, 55: 303-310. DOI:10.1016/j.jes.2016.08.020.
[6] 潘丹萍, 郭彦鹏, 黄荣廷, 等. 石灰石-石膏法烟气脱硫过程中细颗粒物形成特性[J]. 化工学报, 2015, 66(11): 4618-4625. DOI:10.11949/j.issn.0438-1157.20150459.
Pan D P, Guo Y P, Huang R T, et al. Formation of fine particles in flue gas desulphurization process using limestone-gypsum[J]. CIESC Journal, 2015, 66(11): 4618-4625. DOI:10.11949/j.issn.0438-1157.20150459. (in Chinese)
[7] Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction(SCR)of nitric-oxide by ammonia: I. Combined temperature-programmed in situ FTIR and on-line mass-spectroscopy studies[J]. Journal of Catalysis, 1995, 151(1): 226-240. DOI:10.1006/jcat.1995.1024.
[8] Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. DOI:10.1016/S0926-3373(98)00040-X.
[9] Kamata H, Ohara H, Takahashi K, et al. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catalysis Letters, 2001, 73(1): 79-83. DOI:10.1023/A:1009065030750.
[10] 李振. 典型燃煤电厂烟气系统中PM2.5变化规律及排放特征研究[D]. 北京: 清华大学, 2017.
Li Z. Characterization of PM2.5 emissions from conventional coal fired power plants during flue gas cleaning processes[D]. Beijing: Tsinghua University, 2017.(in Chinese)
[11] 马子轸, 李振, 蒋靖坤, 等. 燃煤电厂产生和排放的 PM2.5中水溶性离子特征[J]. 环境科学, 2015, 36(7): 2361-2366. DOI:10.13227/j.hjkx.2015.07.005.
Ma Z Z, Li Z, Jiang J K, et al. Characteristics of water-soluble inorganic ions in PM2.5 emitted from coal-fired power plants[J]. Environmental Science, 2015, 36(7): 2361-2366. DOI:10.13227/j.hjkx.2015.07.005. (in Chinese)
[12] Cheng T, Zheng C Q, Yang L J, et al. Effect of selective catalytic reduction denitrification on fine particulate matter emission characteristics[J]. Fuel, 2019, 238: 18-25. DOI:10.1016/j.fuel.2018.10.086.
[13] Pan Y P, Tian S L, Liu D W, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 2016, 50(15): 8049-8056. DOI:10.1021/acs.est.6b00634.
[14] Li Z, Jiang J K, Ma Z Z, et al. Influence of flue gas desulfurization(FGD)installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction(SCR)[J]. Environmental Pollution, 2017, 230: 655-662. DOI:10.1016/j.envpol.2017.06.103.
[15] Tian S L, Pan Y P, Wang Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 1-19. DOI:10.5194/acp-16-1-2016.
[16] 段雷, 马子轸, 李振, 等. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述[J]. 环境科学, 2015, 36(3): 1117-1122. DOI:10.13227/j.hjkx.2015.03.047.
Duan L, Ma Z Z, Li Z, et al. Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants[J]. Environmental Science, 2015, 36(3): 1117-1122. DOI:10.13227/j.hjkx.2015.03.047. (in Chinese)
[17] Lim K S, Lee S H, Park H S. Prediction for particle removal efficiency of a reverse jet scrubber[J]. Journal of Aerosol Science, 2006, 37(12): 1826-1839. DOI:10.1016/j.jaerosci.2006.06.010.
[18] 潘丹萍. 石灰石-石膏湿法脱硫过程中细颗粒物转化机制研究[D]. 南京: 东南大学, 2017.
Pan D P. Study on fine particle transfer mechanism during the limestone-gypsum desulfurization process[D]. Nanjing: Southeast University, 2017.(in Chinese)
[19] 叶春松, 操容, 高燎, 等. 烟气脱硝逃逸氨的迁移转化及其对脱硫废水处理的影响[J]. 热力发电, 2018, 47(10): 73-77. DOI:10.19666/j.rlfd.201807126.
Ye C S, Cao R, Gao L, et al. Migration and conversion of ammonia escaped from flue gas denitrator and its effect on treatment of desulfurization wastewater[J]. Thermal Power Generation, 2018, 47(10): 73-77. DOI:10.19666/j.rlfd.201807126. (in Chinese)