[1]钟昆志,许兵,方正,等.破碎砾石水泥稳定基层收缩性能[J].东南大学学报(自然科学版),2020,50(4):630-636.[doi:10.3969/j.issn.1001-0505.2020.04.005]
 Zhong Kunzhi,Xu Bing,Fang Zheng,et al.Shrinkage characteristic of crushed gravel cement stabilized base[J].Journal of Southeast University (Natural Science Edition),2020,50(4):630-636.[doi:10.3969/j.issn.1001-0505.2020.04.005]
点击复制

破碎砾石水泥稳定基层收缩性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
630-636
栏目:
交通运输工程
出版日期:
2020-07-20

文章信息/Info

Title:
Shrinkage characteristic of crushed gravel cement stabilized base
作者:
钟昆志1许兵2方正3马涛1黄晓明1
1东南大学交通学院, 南京 211189; 2江西方兴科技有限公司, 南昌 330025; 3湖北省交通规划设计院股份有限公司, 武汉 430051
Author(s):
Zhong Kunzhi1 Xu Bing2 Fang Zheng3 Ma Tao1 Huang Xiaoming1
1School of Transportation, Southeast University, Nanjing 211189, China
2Jiangxi Fang Xing Science and Technology Co., Ltd., Nanchang 330025, China
3Hubei Provincial Communications Planning and Design Institute Co., Ltd., Wuhan 430051, China
关键词:
道路工程 破碎砾石 水泥稳定基层 抗冲刷性能 收缩性能
Keywords:
road engineering crushed gravel cement stabilized base erosion resistance shrinkage characteristic
分类号:
U416.2
DOI:
10.3969/j.issn.1001-0505.2020.04.005
摘要:
为研究破碎砾石水泥稳定基层的收缩性能以提高其适用性,通过逐级填充法确定配合比,探讨其抗冲刷性能和收缩性能.研究结果表明:增加水泥剂量可有效提高抗冲刷性能,干缩主要发生在早期,且失水率和干缩系数均随时间的延长而增大.2种破碎砾石水泥稳定基层(悬浮密实型和骨架密实型)的性能存在差异.对悬浮密实型,粗细集料比越大,7 d无侧限抗压强度越大;级配越粗,抗冲刷性能越强.对骨架密实型,在细集料含量不变的情况下,提高16 mm以上粗集料的含量可增强7 d无侧限抗压强度和抗冲刷性能.悬浮密实型的失水率、干缩系数、干缩应变和温缩系数均大于骨架密实型,且干缩应变变化率要高于失水率变化率.悬浮密实型的收缩性能整体上弱于骨架密实型.
Abstract:
In order to study the shrinkage performance of crushed gravel cement stabilized base and improve its applicability, the synthetic gradation is determined by the step-by-step filling method, and the erosion resistance and shrinkage properties are discussed. The research results show that with the increase of the cement dosage, the erosion resistance is improved, and the dry shrinkage mainly occurs in the early stage, both the water loss rate and the dry shrinkage coefficient increase with time.The performance of two kinds of crushed gravel cement stabilized base(the suspended dense structure and skeleton dense structure)is different.For the suspended dense structure, the greater the ratio of coarse and fine aggregate, the higher the seven-day unconfined compressive strength, and the coarser the gradation, the stronger the erosion resistance. For the skeleton dense structure, without increasing the content of fine aggregate, increasing the content of coarse aggregate above 16 mm can increase the 7 d unconfined compressive strength and the erosion resistance.The water loss rate, dry shrinkage coefficient, dry shrinkage strain and temperature shrinkage coefficient of the suspended dense structure are greater than those of the skeleton dense structure,and the change rate of the dry shrinkage strain is higher than that of the water loss rate.The shrinkage characteristics of the suspended dense structure are generally weaker than those of the skeleton dense structure.

参考文献/References:

[1] 王锐,秦娅青,孙丹丹,等.露天采石场土地复垦适宜性评价及应用[J].水土保持通报,2018,38(3):187-192. DOI:10.13961/j.cnki.stbctb.2018.03.030.
Wang R, Qin Y Q, Sun D D, et al. Evaluation and application of land reclamation suitability in open-pit quarry[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 187-192. DOI:10.13961/j.cnki.stbctb.2018.03.030. (in Chinese)
[2] 李春娟,陈国建,李春利,等.重庆市采石场生态修复新思路[J].中国水土保持,2017(6):60-62. DOI:10.14123/j.cnki.swcc.2017.0152.
[3] 杨光,王旭东.高模量沥青混凝土在半刚性基层长寿命沥青路面中应用的合理性研究[J].公路交通科技,2019,36(5):20-26, 56.DOI:10.3969/j.issn.1002-0268.2019.05.003.
Yang G, Wang X D. Study on rationality of application of high modulus asphalt concrete in long-life semi-rigid base asphalt pavement[J].Journal of Highway and Transportation Research and Development, 2019, 36(5): 20-26, 56.DOI:10.3969/j.issn.1002-0268.2019.05.003. (in Chinese)
[4] 邹静蓉,张治强,李涛.普通干线公路半刚性基层沥青路面破坏机理及控制措施[J].公路交通科技,2018,35(5):1-7, 48.DOI:10.3969/j.issn.1002-0268.2018.05.001.
Zou J R, Zhang Z Q, Li T. Failure mechanism and control measures of common trunk highway semi-rigid base asphalt pavement[J].Journal of Highway and Transportation Research and Development, 2018, 35(5): 1-7, 48.DOI:10.3969/j.issn.1002-0268.2018.05.001. (in Chinese)
[5] Dong Q, Zhao X K, Chen X Q, et al. Long-term mechanical properties of in situ semi-rigid base materials[J]. Road Materials and Pavement Design, 2020, 21(5): 1-16. DOI:10.1080/14680629.2019.1710239.
[6] Gao Y Y. Theoretical analysis of reflective cracking in asphalt pavement with semi-rigid base[J].Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2018, 43(1): 149-157. DOI:10.1007/s40996-018-0154-8.
[7] 郭瑞,杨晓娟,蒋红,等.沥青路面水泥稳定碎石基层抗冲刷性能影响因素试验分析[J].工程科学与技术,2019,51(2):78-84. DOI:10.15961/j.jsuese.201800221.
Guo R, Yang X J, Jiang H, et al. Experimental analysis of influencing factors on anti-erosion performance of cement stabilized macadam base for asphalt pavement[J].Advanced Engineering Sciences, 2019, 51(2): 78-84. DOI:10.15961/j.jsuese.201800221. (in Chinese)
[8] 郭瑞,李萍,岳夏冰.基于灰色理论的水泥稳定碎石基层抗冲刷性能分析[J].硅酸盐通报,2018,37(12):3922-3929. DOI:10.16552/j.cnki.issn1001-1625.2018.12.036.
Guo R, Li P, Yue X B. Analysis on anti-erosion performance of cement stabilized macadam base based on grey theory[J].Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3922-3929. DOI:10.16552/j.cnki.issn1001-1625.2018.12.036. (in Chinese)
[9] van Wijk A J, Larralde J, Lovell C W, et al. Pumping prediction model for highway concrete pavements[J].Journal of Transportation Engineering, 1989, 115(2): 161-175. DOI:10.1061/(asce)0733-947x(1989)115:2(161).
[10] Hansen E C, Johannesen R, Armaghani J M. Field effects of water pumping beneath concrete pavement slabs[J].Journal of Transportation Engineering, 1991, 117(6): 679-696. DOI:10.1061/(asce)0733-947x(1991)117:6(679).
[11] Yin H. Full-scale test of thermally induced reflective cracking in airport pavements[J].Road Materials and Pavement Design, 2015, 16(1): 119-132. DOI:10.1080/14680629.2014.982691.
[12] Oshone M, Dave E V, Sias J E. Asphalt mix fracture energy based reflective cracking performance criteria for overlay mix selection and design for pavements in cold climates[J].Construction and Building Materials, 2019, 211: 1025-1033. DOI:10.1016/j.conbuildmat.2019.03.278.
[13] Cocconcelli C, Park B, Zou J, et al. Fracture-tolerant and shear-resistant interlayers for mitigation of reflective cracking[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(10): 35-46. DOI:10.1177/0361198119847622.
[14] Dave E V, Buttlar W G. Thermal reflective cracking of asphalt concrete overlays[J].International Journal of Pavement Engineering, 2010, 11(6): 477-488. DOI:10.1080/10298430903578911.
[15] Wang X Y, Li K, Zhong Y, et al. Investigation of thermal reflective cracking in asphalt pavement using XFEM coupled with DFLUX subroutine and FILM subroutine[J].Arabian Journal for Science and Engineering, 2019, 44(5): 4795-4805. DOI:10.1007/s13369-018-3554-y.
[16] 王雪莲,黄晓明,卞国剑.LSPM对防治半刚性基层沥青路面反射裂缝机理分析[J].公路交通科技,2016,33(7):12-18.DOI:10.3969/j.issn.1002-0268.2016.07.003.
Wang X L, Huang X M, Bian G J. Analysis on mechanism of using LSPM for preventing reflective cracks in asphalt prevent with semi-rigid base[J].Journal of Highway and Transportation Research and Development, 2016, 33(7): 12-18.DOI:10.3969/j.issn.1002-0268.2016.07.003. (in Chinese)
[17] 郑大为,赵闪,韩慧娟.土工合成材料防治反射裂缝效果的数值模拟[J].辽宁工程技术大学学报(自然科学版),2016,35(7):731-735.DOI:10.11956/j.issn.1008-0562.2016.07.012.
Zheng D W, Zhao S, Han H J. Numerical simulation on the effect of geosynthetics preventing reflective cracks[J].Journal of Liaoning Technical University(Natural Science), 2016, 35(7): 731-735.DOI:10.11956/j.issn.1008-0562.2016.07.012. (in Chinese)
[18] 钱劲松,陈欣然,郑毅,等.基于MMLS3设备的土工布防治反射裂缝效果研究[J].同济大学学报(自然科学版),2018,46(8):1042-1048.DOI:10.11908/j.issn.0253-374x.2018.08.006.
Qian J S, Chen X R, Zheng Y, et al. MMLS3-based research on anti-reflective cracking performance of geotextile[J].Journal of Tongji University(Natural Science), 2018, 46(8): 1042-1048.DOI:10.11908/j.issn.0253-374x.2018.08.006. (in Chinese)
[19] 中华人民共和国交通运输部.JTG E51—2009公路工程无机结合料稳定材料试验规程[S].北京:人民交通出版社, 2009.
[20] 中华人民共和国交通运输部.JTG/T F20—2015公路路面基层施工技术细则[S].北京:人民交通出版社,2015.

相似文献/References:

[1]魏建军,邢姣秀,付智.行车荷载引起桥梁振动对修复混凝土性能影响[J].东南大学学报(自然科学版),2010,40(5):1057.[doi:10.3969/j.issn.1001-0505.2010.05.033]
 Wei Jianjun,Xing Jiaoxiu,Fu Zhi.Effect of traffic load induced bridge vibrations on concrete tensile properties[J].Journal of Southeast University (Natural Science Edition),2010,40(4):1057.[doi:10.3969/j.issn.1001-0505.2010.05.033]
[2]倪富健,成晟,顾兴宇,等.路面结构的动态谱元分析[J].东南大学学报(自然科学版),2010,40(3):575.[doi:10.3969/j.issn.1001-0505.2010.03.027]
 Ni Fujian,Cheng Sheng,Gu Xingyu,et al.Spectral element analysis of dynamic pavement structure response[J].Journal of Southeast University (Natural Science Edition),2010,40(4):575.[doi:10.3969/j.issn.1001-0505.2010.03.027]
[3]马涛,张道义,黄晓明.SBS改性沥青抽提回收影响因素及改进方案[J].东南大学学报(自然科学版),2008,38(5):811.[doi:10.3969/j.issn.1001-0505.2008.05.014]
 Ma Tao,Zhang Daoyi,Huang Xiaoming.Influential factors and improvement of extraction and recovery of SBS modified asphalt[J].Journal of Southeast University (Natural Science Edition),2008,38(4):811.[doi:10.3969/j.issn.1001-0505.2008.05.014]
[4]黄宝涛,廖公云,张静芳.半刚性基层沥青路面层间接触临界状态值的计算方法[J].东南大学学报(自然科学版),2007,37(4):666.[doi:10.3969/j.issn.1001-0505.2007.04.024]
 Huang Baotao,Liao Gongyun,Zhang Jingfang.Analytical method of interlayer contact fettle in semi-rigid-base bituminous pavement[J].Journal of Southeast University (Natural Science Edition),2007,37(4):666.[doi:10.3969/j.issn.1001-0505.2007.04.024]
[5]陈俊,黄晓明.采用离散元方法评价集料的骨架结构[J].东南大学学报(自然科学版),2012,42(4):761.[doi:10.3969/j.issn.1001-0505.2012.04.035]
 Chen Jun,Huang Xiaoming.Evaluation of aggregate skeleton structure using the discrete element method[J].Journal of Southeast University (Natural Science Edition),2012,42(4):761.[doi:10.3969/j.issn.1001-0505.2012.04.035]
[6]孙志林,黄晓明.沥青路面线性疲劳损伤特性及形变规律[J].东南大学学报(自然科学版),2012,42(3):521.[doi:10.3969/j.issn.1001-0505.2012.03.025]
 Sun Zhilin,Huang Xiaoming.Linear fatigue damage characteristics and deformation law of asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2012,42(4):521.[doi:10.3969/j.issn.1001-0505.2012.03.025]
[7]王艳,倪富健,李再新.水泥稳定碎石基层温缩性能试验及预估控制[J].东南大学学报(自然科学版),2008,38(2):260.[doi:10.3969/j.issn.1001-0505.2008.02.015]
 Wang Yan,Ni Fujian,Li Zaixin.Test and estimate control on temperature shrinkage performance of cement-treated macadam[J].Journal of Southeast University (Natural Science Edition),2008,38(4):260.[doi:10.3969/j.issn.1001-0505.2008.02.015]
[8]李志栋,黄晓明,岳学军.半刚性基层沥青路面非连续结构强迫振动声效[J].东南大学学报(自然科学版),2011,41(6):1277.[doi:10.3969/j.issn.1001-0505.2011.06.028]
 Li Zhidong,Huang Xiaoming,Yue Xuejun.Sound analysis of forced vibration feature of discontinuous structure in semi-rigid base asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2011,41(4):1277.[doi:10.3969/j.issn.1001-0505.2011.06.028]
[9]孙璐,辛宪涛,任皎龙.纳米改性沥青混合料路用性能[J].东南大学学报(自然科学版),2013,43(4):873.[doi:10.3969/j.issn.1001-0505.2013.04.037]
 Sun Lu,Xin Xiantao,Ren Jiaolong.Pavement performance of nanomaterial modified asphalt mixture[J].Journal of Southeast University (Natural Science Edition),2013,43(4):873.[doi:10.3969/j.issn.1001-0505.2013.04.037]
[10]陈俊,黄晓明.路面加铺后旧沥青混合料的疲劳性能[J].东南大学学报(自然科学版),2008,38(3):516.[doi:10.3969/j.issn.1001-0505.2008.03.030]
 Chen Jun,Huang Xiaoming.Fatigue performance of old pavement asphalt mixtures after overlay[J].Journal of Southeast University (Natural Science Edition),2008,38(4):516.[doi:10.3969/j.issn.1001-0505.2008.03.030]

备注/Memo

备注/Memo:
收稿日期: 2020-02-02.
作者简介: 钟昆志(1992—),男,博士生;黄晓明(联系人),男,博士,教授,博士生导师,huangxm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778139)、江西省交通运输厅科技资助项目(2017C0003-5).
引用本文: 钟昆志,许兵,方正,等.破碎砾石水泥稳定基层收缩性能[J].东南大学学报(自然科学版),2020,50(4):630-636. DOI:10.3969/j.issn.1001-0505.2020.04.005.
更新日期/Last Update: 2020-07-20