[1]付兴贺,付相达,孙剑飞,等.半球型线圈阵列聚焦磁场计算与性能优化[J].东南大学学报(自然科学版),2020,50(4):689-697.[doi:10.3969/j.issn.1001-0505.2020.04.013]
 Fu Xinghe,Fu Xiangda,Sun Jianfei,et al.Calculation and optimization of magnetic focusing field of hemispherical coil array[J].Journal of Southeast University (Natural Science Edition),2020,50(4):689-697.[doi:10.3969/j.issn.1001-0505.2020.04.013]
点击复制

半球型线圈阵列聚焦磁场计算与性能优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
689-697
栏目:
电气工程
出版日期:
2020-07-20

文章信息/Info

Title:
Calculation and optimization of magnetic focusing field of hemispherical coil array
作者:
付兴贺1付相达1孙剑飞2陈武1
1东南大学电气工程学院, 南京 210096; 2东南大学生物科学与医学工程学院, 南京 210096
Author(s):
Fu Xinghe1 Fu Xiangda1 Sun Jianfei2 Chen Wu1
1School of Electrical Engineering, Southeast University, Nanjing 210096, China
2School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
关键词:
聚焦磁场 聚磁线圈阵列 解析计算 遗传算法 优化设计
Keywords:
magnetic focusing field magnetic focusing coil array analytic calculation genetic algorithm optimal design
分类号:
TM153
DOI:
10.3969/j.issn.1001-0505.2020.04.013
摘要:
为提高聚磁装置的电磁性能,提升经颅刺激、肿瘤治疗等领域的医疗效果,提出一种半球型线圈阵列结构及优化设计方法.根据电磁场理论建立了聚焦磁场解析计算模型,利用电磁场数值计算方法计算聚焦磁场,验证了解析模型的正确性,揭示了聚焦磁场的分布规律,给出了主要结构参数的灵敏度评价.根据优化目标和约束条件,利用解析模型和智能优化算法(NSGA-Ⅱ)对聚磁线圈阵列开展优化设计,得到满足热性能和聚磁性能等指标的设计结果.建立了聚磁线圈阵列原理样机并开展实验研究.优化计算结果、有限元计算结果及实验结果对比表明:聚焦磁场解析计算模型的计算误差约2%~3%,半球型线圈阵列布置合理,聚焦磁场满足范围、梯度以及幅值要求,采用NSGA-Ⅱ优化设计有效提高了线圈阵列的聚磁性能.
Abstract:
To enhance the electromagnetic performance of the focusing device and improve the medical effects of transcranial magnetic stimulation, tumor therapy and other fields, a hemispherical coil array is presented. An analytical model of the spatial focusing magnetic field was established based on the theory of an electromagnetic field. The electromagnetic field of the hemispherical coil array was calculated by the finite element method and analytical method. The magnetic field distribution was revealed, and the sensitivity evaluation of the main structural parameters was given. Furthermore, the parameters of the coil array were optimized by NSGA-Ⅱ based on the optimization objectives and constraints as well as the analytical model above. The design results satisfying the thermal and magnetic focusing requirements were obtained. The principle prototype of the focusing coil array was established and the experimental research was carried out. The comparison of optimization, finite element and experimental results shows that the calculation error of the analytical model is about 2% to 3%. The configuration of the hemispherical coil array is reasonable and is able to generate the magnetic focusing field, which meets the requirements of range, gradient and amplitude. In addition, the magnetic focusing performance of the coil array optimized by NSGA-Ⅱ is greatly improved.

参考文献/References:

[1] Ueno S, Matsuda T, Fujiki M. Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain[J].IEEE Transactions on Magnetics, 1990, 26(5): 1539-1544. DOI:10.1109/20.104438.
[2] Roth B J, MacCabee P J, Eberle L P, et al.In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve[J]. Electroencephalography and Clinical Neurophysiology, 1994, 93(1): 68-74. DOI:10.1016/0168-5597(94)90093-0.
[3] Lin V W H, Hsiao I N, Dhaka V. Magnetic coil design considerations for functional magnetic stimulation[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(5): 600-610. DOI:10.1109/10.841332.
[4] March S D, McAtee S, Senter M, et al. Focused and deep brain magnetic stimulation using new coil design in mice[C]//2013 6th International IEEE/EMBS Conference on Neural Engineering(NER). San Diego, CA, USA, 2013: 125-128. DOI:10.1109/ner.2013.6695887.
[5] Sánchez C C, Rodriguez J M G, Olozábal Á Q, et al. Novel TMS coils designed using an inverse boundary element method[J].Physics in Medicine and Biology, 2017, 62(1): 73-90. DOI:10.1088/1361-6560/62/1/73.
[6] Meng Q L, Cherry M, Refai A, et al. Development of focused transcranial magnetic stimulation for rodents by copper-array shields[J].IEEE Transactions on Magnetics, 2018, 54(5): 1-4. DOI:10.1109/tmag.2018.2796098.
[7] Wang B S, Shen M R, Deng Z D, et al. Redesigning existing transcranial magnetic stimulation coils to reduce energy: Application to low field magnetic stimulation[J].Journal of Neural Engineering, 2018, 15(3): 036022. DOI:10.1088/1741-2552/aaa505.
[8] 胡维平, 王修信, 杨永栩, 等. 经颅磁刺激线圈的磁聚焦优化设计[J]. 生物医学工程学杂志, 2007, 24(4): 910-913.
  Hu W P, Wang X X, Yang Y X, et al. Design of a half solenoid coil for optimization of magnetic focusing in trans-cranial magnetic stimulation[J]. Journal of Biomedical Engineering, 2007, 24(4): 910-913.(in Chinese)
[9] 刘冀成, 黄卡玛, 华伟. 基于遗传算法的磁聚焦线圈阵列设计与场分布计算[J]. 成都理工大学学报(自然科学版), 2004, 31(4): 412-416.
  Liu J C, Huang K M, Hua W. Design and field calculation of coil array for magnetic focus based on genetic algorithm[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(4): 412-416.(in Chinese)
[10] 陈勇,徐桂芝,杨硕.经颅磁刺激线圈设计及分析[J].华北电力大学学报,2005,32(z1): 98-101. DOI: 10.3969 /j.issn.1007-2691.2005.z1.027.
Chen Y,Xu G Z,Yang S.Design and analysis of transcranial magnetic stimulation coil [J]. Journal of North China Electric Power University, 2005,32(z1): 98-101. DOI:10.3969/j.issn.1007-2691.2005.z1.027. (in Chinese)
[11] 米彦, 蒋春, 姚陈果, 等. 肿瘤治疗用脉冲磁场发生器中聚焦磁场线圈的研制[J]. 高电压技术, 2013, 39(1): 141-148.
  Mi Y, Jiang C, Yao C G, et al. Development of focused magnetic field coil for pulse magnetic field generator applied in tumor treatment[J]. High Voltage Engineering, 2013, 39(1): 141-148.(in Chinese)
[12] Han B H, Lee S Y, Kim J H, et al. Some technical aspects of magnetic stimulation coil design with the ferromagnetic effect[J].Medical & Biological Engineering & Computing, 2003, 41(5): 516-518. DOI:10.1007/bf02345312.
[13] Sánchez C C, Garcia-Pacheco F J, Rodriguez J M G, et al. An inverse boundary element method computational framework for designing optimal TMS coils[J]. Engineering Analysis with Boundary Elements, 2018, 88: 156-169. DOI:10.1016/j.enganabound.2017.11.002.
[14] Koponen L M, Nieminen J O, Ilmoniemi R J. Minimum-energy coils for transcranial magnetic stimulation: Application to focal stimulation[J].Brain Stimulation, 2015, 8(1): 124-134. DOI:10.1016/j.brs.2014.10.002.
[15] Koponen L M, Nieminen J O, Mutanen T P, et al. Coil optimisation for transcranial magnetic stimulation in realistic head geometry[J].Brain Stimulation, 2017, 10(4): 795-805. DOI:10.1016/j.brs.2017.04.001.
[16] Luis G, Stefan G, Peterchev A V. Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy [J].Journal of Neural Engineering, 2018, 15(4):1-33. DOI:10.1088/1741-2552/aac967.
[17] 张春兰. 基于多线圈的磁刺激聚焦度研究[D]. 兰州: 兰州交通大学, 2016.
  Zhang C L.Study on focality of magnetic stimulation based on multiple coils[D]. Lanzhou: Lanzhou Jiatong University, 2016.(in Chinese)
[18] 朱雷鸣, 吴晓平, 李建伟, 等. 直角坐标系的欧拉旋转变换及动力学方程[J]. 海洋测绘, 2010, 30(3): 20-22, 40.
  Zhu L M,Wu X P, Li J W, et al. The Euler’s rotation and dynamic equation of rectangular coordinate system[J]. Hydrographic Surveying and Charting, 2010, 30(3): 20-22, 40.(in Chinese)
[19] 王原,马力,王凌,等.智能机器人可变参数群体控制模型的多目标优化方法[J].中国科学:技术学,2020, 50: 1-12. DOI: 10.1360/SST-2019-0280.
Wang Y, Ma L, Wang L,et al. A multi-objective optimization method for intelligent swarm robotic control model with changeable parameters[J].Scientia Sinica Technologica, 2020,50: 1-12. DOI:10.1360/SST-2019-0280. (in Chinese)
[20] 谭碧飞, 陈皓勇, 梁子鹏, 等. 基于协同NSGA-Ⅱ的微电网随机多目标经济调度[J]. 高电压技术, 2019, 45(10): 3130-3139. DOI:10.13336/j.1003-6520.hve.20190410030.
Tan B F, Chen H Y, Liang Z P,et al. Stochastic multi-objective economic dispatch of micro-grid based on CoNSGA-Ⅱ[J]. High Voltage Engineering, 2019, 45(10): 3130-3139. DOI:10.13336/j.1003-6520.hve.20190410030. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2019-12-21.
作者简介: 付兴贺(1978—),男,博士,副教授,fuxinghe@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51977035).
引用本文: 付兴贺,付相达,孙剑飞,等.半球型线圈阵列聚焦磁场计算与性能优化[J].东南大学学报(自然科学版),2020,50(4):689-697. DOI:10.3969/j.issn.1001-0505.2020.04.013.
更新日期/Last Update: 2020-07-20