[1]梁止水,高琦,刘豪伟,等.煤矸石制备NaX型分子筛及其对Cd2+的吸附性能[J].东南大学学报(自然科学版),2020,50(4):741-747.[doi:10.3969/j.issn.1001-0505.2020.04.019]
 Liang Zhishui,Gao Qi,Liu Haowei,et al.Synthesis of NaX zeolite from coal gangue and its adsorption capability for Cd2+[J].Journal of Southeast University (Natural Science Edition),2020,50(4):741-747.[doi:10.3969/j.issn.1001-0505.2020.04.019]
点击复制

煤矸石制备NaX型分子筛及其对Cd2+的吸附性能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
741-747
栏目:
环境科学与工程
出版日期:
2020-07-20

文章信息/Info

Title:
Synthesis of NaX zeolite from coal gangue and its adsorption capability for Cd2+
作者:
梁止水高琦刘豪伟高海鹰
东南大学土木工程学院, 南京210096
Author(s):
Liang Zhishui Gao Qi Liu Haowei Gao Haiying
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
煤矸石 NaX型分子筛 重金属 比表面积 吸附性能
Keywords:
coal gangue NaX zeolite heavy metal specific surface area adsorption capability
分类号:
X752
DOI:
10.3969/j.issn.1001-0505.2020.04.019
摘要:
以鄂尔多斯昶旭煤矿煤矸石为研究对象,采用碱熔法制备NaX型分子筛,利用FTIR、XRD、SEM、BET等方法对其进行了表征,并研究了分子筛投加量、废水初始pH值以及吸附温度对NaX型分子筛吸附废水中重金属Cd2+性能的影响.结果表明,以煤矸石为主要材料合成的NaX型分子筛化学组成通用公式为3.5Na2O·Al2O3· 2.9SiO2·150H2O,合成条件为陈化时间6 h、晶化温度和时间分别为100 ℃和12 h,结构为八面体晶体形状且具有较大的比表面积(406.7 m2/g)和总孔体积(0.242 m3/g).在分子筛投加量为2 g/L、废水初始pH=5、吸附温度为室温(25 ℃)的条件下吸附效果最好,对Cd2+(100 mg/L)的去除率达到90%以上.采用Langmuir、Freundlich和Temkin三个等温吸附模型对吸附效果进行比较,NaX型分子筛吸附Cd2+更加符合Langmuir等温吸附模型,其最大吸附容量达到100.11 mg/g.研究结果对利用煤矸石制备分子筛提供了一定的基础,并为其资源化应用提供了一种可能的途径.
Abstract:
NaX zeolite is synthesized from coal gangue by the alkali fusion method. The coal gangue is from Changxu coal mine in Ordos City and its performances are characterized by Fourier transform infrared spectrometer(FTIR), X-ray diffraction(XRD), scanning electron microscope(SEM), and specific surface area(BET). The effects of molecular zeolite dosage, initial pH of wastewater and adsorption temperature on the adsorption capability of heavy metal ion Cd2+ by NaX zeolite are studied. The results show that NaX zeolite can be synthesized by the coal gangue using the general formula 3.5Na2O·Al2O3·2.9SiO2·150H2O, and the synthesis conditions are 6 h of aging time, 100 ℃ and 12 h of crystallization temperature and time, respectively. The SEM and BET show that the structure is octahedral crystal shape and has a large specific surface area(406.7 m2/g)and total pore volume(0.242 m3/g). Under the conditions of 2 g/L of molecular sieve, initial pH=5 of wastewater and adsorption temperature(25 ℃), the best adsorption rate of heavy metal ion Cd2+(100 mg/L)is more than 90%. Fitting in the three isotherm adsorption models(Langmuir, Freundlich and Temkin), the adsorption of Cd2+ by NaX zeolite is more in line with Langmuir isotherm, and the maximum adsorption capacity is approximately 100.11 mg/g. The results provide a basis for the preparation and screening of coal gangue and a possible way for its resource application.

参考文献/References:

[1] 徐良骥, 黄璨, 章如芹, 等. 煤矸石充填复垦地理化特性与重金属分布特征[J]. 农业工程学报, 2014, 30(5): 211-219. DOI:10.3969/j.issn.1002-6819.2014.05.027.
Xu L J, Huang C, Zhang R Q, et al. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 211-219. DOI:10.3969/j.issn.1002-6819.2014.05.027. (in Chinese)
[2] 武彦辉. 我国煤矸石的处置利用现状及展望[J]. 中国环保产业, 2019(1): 53-55. DOI:10.3969/j.issn.1006-5377.2019.01.011.
Wu Y H. Disposal and utilization of coal gangue and its prospect in China[J].China Environmental Protection Industry, 2019(1): 53-55. DOI:10.3969/j.issn.1006-5377.2019.01.011. (in Chinese)
[3] 吴莹, 胡振华. 浅谈煤矸石的危害及综合利用[J]. 亚热带水土保持, 2011, 23(1): 64-66. DOI:10.3969/j.issn.1002-2651.2011.01.018.
Wu Y, Hu Z H. Initial study on the hazard of coal gangue and the comprehensive utilization[J]. Subtropical Soil and Water Conservation, 2011, 23(1): 64-66. DOI:10.3969/j.issn.1002-2651.2011.01.018. (in Chinese)
[4] 崔晓南, 黄文辉, 丁国平, 等. 准格尔煤田官板乌素6号煤层中煤矸石的矿物学特征研究[J]. 岩石矿物学杂志, 2016, 35(4): 647-654. DOI:10.3969/j.issn.1000-6524.2016.04.006.
Cui X N, Huang W H, Ding G P, et al. Mineralogical features of the coal gangue in the Guanbanwusu mine, Jungar coalfield[J].Acta Petrologica et Mineralogica, 2016, 35(4): 647-654. DOI:10.3969/j.issn.1000-6524.2016.04.006. (in Chinese)
[5] Tan W F, Wang L A, Huang C. Environmental effects of coal gangue and its utilization[J].Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(24): 3716-3721. DOI:10.1080/15567036.2012.700997.
[6] 田震, 李少华. 以煤矸石为原料合成13X型沸石[J]. 非金属矿, 1997, 20(6): 31-32, 27.
[7] 任根宽. 煤矸石合成4A分子筛及其在废水中的应用[J]. 无机盐工业, 2013, 45(10): 42-44. DOI:10.3969/j.issn.1006-4990.2013.10.014.
Ren G K. Preparation of 4A molecular sieve from coal gangue and its application in wastewater treatment[J].Inorganic Chemicals Industry, 2013, 45(10): 42-44. DOI:10.3969/j.issn.1006-4990.2013.10.014. (in Chinese)
[8] 李华伟, 郑寿荣, 许昭怡, 等. 13X分子筛去除水中重金属离子的研究[J]. 离子交换与吸附, 2007, 23(5): 408-414.
  Li H W, Zheng S R, Xu Z Y, et al. Study on the removal of aqueous heavy metal cations by 13X zeolite[J]. Ion Exchange and Adsorption, 2007, 23(5): 408-414.(in Chinese)
[9] Svilovic S, Rusic D, Basic A. Investigations of different kinetic models of copper ions sorption on zeolite 13X[J].Desalination, 2010, 259(1): 71-75. DOI:10.1016/j.desal.2010.04.033.
[10] Liu L Y, Singh R, Xiao P, et al. Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams[J]. Adsorption, 2011, 17(5): 795-800. DOI:10.1007/s10450-011-9332-8.
[11] 赵国庆, 王群龙, 王亚楠, 等. 改性 X 分子筛催化乙苯 CO2氧化脱氢制取苯乙烯[J]. 石油学报(石油加工), 2016, 32(2): 263-269. DOI:10.3969/j.issn.1001-8719.2016.02.006.
Zhao G Q, Wang Q L, Wang Y N, et al. Oxidative dehydrogenation of ethylbenzene with CO2 to styrene over modified X zeolite[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(2): 263-269. DOI:10.3969/j.issn.1001-8719.2016.02.006. (in Chinese)
[12] 石飞, 刘红, 刘鲁建, 等. 4A和13X分子筛去除水中重金属Cd2+及其吸附性能研究[J]. 武汉科技大学学报(自然科学版), 2014, 37(1): 54-58. DOI:10.3969/j.issn.1674-3644.2014.01.013.
Shi F, Liu H, Liu L J, et al. 4A and 13X molecular sieves used to remove heavy metal ion Cd2+ from water and their adsorption property[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2014, 37(1): 54-58. DOI:10.3969/j.issn.1674-3644.2014.01.013. (in Chinese)
[13] 杨姗也, 王祥学, 陈中山, 等. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2): 225-242. DOI:10.7536/PC170829.
Yang S Y, Wang X X, Chen Z S, et al. Synthesis of Fe3O4-based nanomaterials and their application in the removal of radionuclides and heavy metal ions[J]. Progress in Chemistry, 2018, 30(2): 225-242. DOI:10.7536/PC170829. (in Chinese)
[14] 王宁, 庞宏伟, 于淑君, 等. 层状双金属氢氧化物及复合材料对放射性元素铀的吸附及机理研究[J]. 化学学报, 2019, 77(2): 143-152. DOI:10.6023/A18090404.
Wang N, Pang H W, Yu S J, et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: A review[J]. Acta Chimica Sinica, 2019, 77(2): 143-152. DOI:10.6023/A18090404. (in Chinese)
[15] 刘玥, 吴忆涵, 庞宏伟, 等. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846. DOI:10.7536/PC181018.
Liu Y, Wu Y H, Pang H W, et al. Study on the removal of water pollutants by graphite phase carbon nitride materials[J]. Progress in Chemistry, 2019, 31(6): 831-846. DOI:10.7536/PC181018. (in Chinese)
[16] 王祥学, 于淑君, 王祥科. 金属有机骨架材料在放射性核素去除中的研究[J]. 无机材料学报, 2019, 34(1): 17-26. DOI:10.15541/jim20180211.
Wang X X, Yu S J, Wang X K. Removal of radionuclides by metal-organic framework-based materials[J].Journal of Inorganic Materials, 2019, 34(1): 17-26. DOI:10.15541/jim20180211. (in Chinese)
[17] 杨殿范,魏存弟,蒋引珊, 等. 鄂尔多斯盆地北缘煤炭固体废弃物中铝的特征[J]. 吉林大学学报(地球科学版), 2012, 42(3): 827-831. DOI: 10.3969/j.issn.1671-5888.2012.03.028.
Yang D F, Wei C D, Jiang Y S, et al. Aluminum characteristics of solid wastes from coal fields in north side of Ordose Basin [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(3): 827-831. DOI:10.3969/j.issn.1671-5888.2012.03.028. (in Chinese)
[18] 代世峰, 任德贻, 李生盛, 等. 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现[J]. 地质学报, 2006, 80(2): 294-300. DOI:10.3321/j.issn:0001-5717.2006.02.015.
Dai S F, Ren D Y, Li S S, et al. A discovery of extremely-enriched boehmite from coal in the junger coalfield, the northeastern Ordos basin[J]. Acta Geologica Sinica, 2006, 80(2): 294-300. DOI:10.3321/j.issn:0001-5717.2006.02.015. (in Chinese)
[19] Hu T, Gao W Y, Liu X, et al. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash[J].Royal Society Open Science, 2017, 4(10): 170921. DOI:10.1098/rsos.170921.
[20] 宋科, 赵艺楠. 以石英砂为硅源合成NaX沸石的研究[J]. 化学研究与应用, 2015, 27(11): 1715-1720. DOI:10.3969/j.issn.1004-1656.2015.11.019.
Song K, Zhao Y N. Study on the synthesis of zeolite NaX from quartz sand as silica source[J].Chemical Research and Application, 2015, 27(11): 1715-1720. DOI:10.3969/j.issn.1004-1656.2015.11.019. (in Chinese)
[21] Zhang X, Tang D X, Zhang M, et al. Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals[J]. Powder Technology, 2013, 235: 322-328. DOI:10.1016/j.powtec.2012.10.046.
[22] 王万军, 赵彦巧. 青峰煤矸石矿物学特征及分子筛制备研究[J]. 矿产保护与利用, 2006(6): 18-23. DOI:10.3969/j.issn.1001-0076.2006.06.005.
Wang W J, Zhao Y Q. Preparation study of molecular sieve from coal gangue in Qingfeng[J].Conservation and Utilization of Mineral Resources, 2006(6): 18-23. DOI:10.3969/j.issn.1001-0076.2006.06.005. (in Chinese)
[23] 陶春光, 田冬, 陈永红, 等. 粉煤灰尾渣碱融水热合成高性能13X分子筛[J]. 硅酸盐通报, 2019, 38(3): 622-626, 633.
  Tao C G, Tian D, Chen Y H, et al. Fly ash tailings alkali melting hydrothermal synthesis high performance 13X molecular sieves[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 622-626, 633.(in Chinese)
[24] Zhou C Y, Alshameri A, Yan C J, et al. Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite[J].Journal of Porous Materials, 2013, 20(4): 587-594. DOI:10.1007/s10934-012-9631-9.
[25] de C Izidoro J, Fungaro D A, Abbott J E, et al. Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems[J].Fuel, 2013, 103: 827-834. DOI:10.1016/j.fuel.2012.07.060.
[26] Ma Y N, Yan C J, Alshameri A, et al. Synthesis and characterization of 13X zeolite from low-grade natural Kaolin[J].Advanced Powder Technology, 2014, 25(2): 495-499. DOI:10.1016/j.apt.2013.08.002.
[27] Garshasbi V, Jahangiri M, Anbia M. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays[J]. Applied Surface Science, 2017, 393: 225-233. DOI:10.1016/j.apsusc.2016.09.161.
[28] Ansari M, Raisi A, Aroujalian A, et al. Synthesis of nano-NaX zeolite by microwave heating method for removal of lead, copper, and cobalt ions from aqueous solution[J].Journal of Environmental Engineering, 2015, 141(5): 04014088. DOI:10.1061/(ASCE)EE.1943-7870.0000919.
[29] Zhao Y N. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater [J]. Environmental Engineering Science, 2016, 33(7): 443-454. DOI: 10.1089/ees.2015.0166.
[30] 彭利冲, 李素芹. Na-X分子筛对Cu(Ⅱ)吸附性能研究[J]. 人工晶体学报, 2018, 47(9): 1803-1810. DOI:10.3969/j.issn.1000-985X.2018.09.010.
Peng L C, Li S Q. Study on adsorption properties of Cu(Ⅱ)on Na-X zeolite[J]. Journal of Synthetic Crystals, 2018, 47(9): 1803-1810. DOI:10.3969/j.issn.1000-985X.2018.09.010. (in Chinese)

相似文献/References:

[1]刘松玉,邱钰,童立元,等.煤矸石的动力特性试验研究[J].东南大学学报(自然科学版),2005,35(2):280.[doi:10.3969/j.issn.1001-0505.2005.02.026]
 Liu Songyu,Qiu Yu,Tong Liyuan,et al.Experimental research on dynamic properties of coal mining wastes[J].Journal of Southeast University (Natural Science Edition),2005,35(4):280.[doi:10.3969/j.issn.1001-0505.2005.02.026]

备注/Memo

备注/Memo:
收稿日期: 2020-02-23.
作者简介: 梁止水(1988—),男,博士, 助理研究员,zs_liang@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2017YFC0504500)、江苏省自然科学基金青年资助项目(BK20190348).
引用本文: 梁止水,高琦,刘豪伟,等.煤矸石制备NaX型分子筛及其对Cd2+的吸附性能[J].东南大学学报(自然科学版),2020,50(4):741-747. DOI:10.3969/j.issn.1001-0505.2020.04.019.
更新日期/Last Update: 2020-07-20