参考文献/References:
[1] Davis A P, Hunt W F, Traver R G, et al. Bioretention technology: Overview of current practice and future needs[J].Journal of Environmental Engineering, 2009, 135(3): 109-117. DOI:10.1061/(ASCE)0733-9372(2009)135:3(109).
[2] Lee J, Gil K. Evaluating bioretention hydrology and nutrient removal for restoring wetland function at artificial rainfall[J].Ecological Engineering, 2020, 150: 105823. DOI:10.1016/j.ecoleng.2020.105823.
[3] 张忠祥. 生物滞留池处理乡村散养家禽径流污染的试验研究[D]. 南京: 东南大学, 2017.
Zhang Z X.Experimental study on treatment of abandoned poultry runoff pollution in rural area by bioretention ponds[D]. Nanjing: Southeast University, 2017.(in Chinese)
[4] Hunt W F, Jarrett A R, Smith J T, et al. Evaluating bioretention hydrology and nutrient removal at three field sites in north Carolina[J].Journal of Irrigation and Drainage Engineering—ASCE, 2006, 132(6): 600-608. DOI:10.1061/(ASCE)0733-9437(2006)132:6(600).
[5] 张弘. 生物滞留池处理化粪池出水及其效能强化研究[D]. 南京: 东南大学, 2017.
Zhang H. The study on bioretention treating effluent from septic tank and methods to enhance its pollutant removal efficiency[D]. Nanjing: Southeast University, 2017.(in Chinese)
[6] Palmer E T, Poor C J, Hinman C, et al. Nitrate and phosphate removal through enhanced bioretention media: Mesocosm study[J].Water Environment Research, 2013, 85(9): 823-832.
[7] Payne E G I, Fletcher T D, Cook P L M, et al. Processes and drivers of nitrogen removal in stormwater biofiltration[J].Critical Reviews in Environmental Science and Technology, 2014, 44(7): 796-846. DOI:10.1080/10643389.2012.741310.
[8] 孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究[J]. 北京师范大学学报(自然科学版), 2013, 49(2): 286-291.
Meng Y Y, Wang H X, Zhang S H, et al. Experiments on detention, retention and purifying effects of urban road runoff based on bioretention[J].Journal of Beijing Normal University(Natural Science), 2013, 49(2): 286-291.(in Chinese)
[9] Hunt W F, Smith J T, Jadlocki S J, et al. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C[J].Journal of Environmental Engineering, 2008, 134(5): 403-408. DOI:10.1061/(ASCE)0733-9372(2008)134:5(403).
[10] 李俊奇, 向璐璐, 毛坤, 等. 雨水花园蓄渗处置屋面径流案例分析[J]. 中国给水排水, 2010, 26(10): 129-133.
Li J Q, Xiang L L, Mao K, et al. Case study on rain garden storage-infiltration system for disposal of roof runoff[J]. China Water & Wastewater, 2010, 26(10): 129-133.(in Chinese)
[11] 谢辉, 包樱钰, 李菲菲, 等. A2/O生活污水处理系统中抗生素抗性基因的分布及去除[J]. 环境工程, 2019, 37(12): 80-89. DOI:10.13205/j.hjgc.201912015.
Xie H, Bao Y Y, Li F F, et al. Distribution and removal of antibiotic resistance genes in an A2/O domestic wastewater treatment plant[J]. Environmental Engineering, 2019, 37(12): 80-89. DOI:10.13205/j.hjgc.201912015. (in Chinese)
[12] 陈军. 生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D]. 北京: 中国科学院大学, 2017.
Chen J. Removal of antibiotics and ARGs from domestic sewage by constructed wetlands: Removal mechanism and system optimization[D]. Beijing: University of Chinese Academy of Sciences, 2017.(in Chinese)
[13] 李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29. DOI:10.19672/j.cnki.1003-6504.2019.03.003.
Li S J, Xie W M. Research advances in antibiotics removal in wastewater treatment plants: A review[J]. Environmental Science & Technology, 2019, 42(3): 17-29. DOI:10.19672/j.cnki.1003-6504.2019.03.003. (in Chinese)
[14] 丁紫荣, 贺德春, 万大娟, 等. 中型污水处理厂中药物和个人护理品的分布与去除[J]. 环境工程学报, 2015, 9(3): 1247-1252.
Ding Z R, He D C, Wan D J, et al. Occurrence and removal of pharmaceuticals and personal care production by medium-sized sewage treatment plants[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1247-1252.(in Chinese)
[15] de Souza Santos L V, Teixeira D C, Jacob R S, et al. Evaluation of the aerobic and anaerobic biodegradability of the antibiotic norfloxacin[J].Water Science and Technology, 2014, 70(2): 265-271. DOI:10.2166/wst.2014.214.
[16] Sui Q, Zhao W T, Cao X Q, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor[J].Journal of Hazardous Materials, 2017, 323: 99-108. DOI:10.1016/j.jhazmat.2016.03.047.
[17] Baker S, Thomson N, Weill F X, et al. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens[J].Science, 2018, 360(6390): 733-738. DOI:10.1126/science.aar3777.
[18] Manaia C M, Rocha J, Scaccia N, et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box[J].Environment International, 2018, 115: 312-324. DOI:10.1016/j.envint.2018.03.044.
[19] Wu M H, Que C J, Tang L, et al. Distribution, fate, and risk assessment of antibiotics in five wastewater treatment plants in Shanghai, China[J].Environmental Science and Pollution Research International, 2016, 23(18): 18055-18063. DOI:10.1007/s11356-016-6946-0.
[20] Rossmann J, Schubert S, Gurke R, et al. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS[J].Journal of Chromatography, B. Analytical Technologies in the Biomedical and Life Sciences, 2014, 969: 162-170. DOI:10.1016/j.jchromb.2014.08.008.
[21] Hou J, Wang C, Mao D Q, et al. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China[J].Environmental Science and Pollution Research, 2016, 23(2): 1722-1731. DOI:10.1007/s11356-015-5431-5.
[22] Glaister B J, Fletcher T D, Cook P L M, et al. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: The role of filter media, vegetation and saturated zone[J].Water Science and Technology, 2014, 69(9): 1961-1969. DOI:10.2166/wst.2014.117.
[23] Kim H, Choi J W, Kim T, et al. Effect of TSS removal from stormwater by mixed media column on T-N, T-P, and organic material removal[J].Water, 2018, 10(8): 1069. DOI:10.3390/w10081069.
[24] Mei Y, Gao L, Zhou H, et al. Ranking media for multi-pollutant removal efficiency in bioretention[J].Water Science and Technology, 2018, 77(8): 2023-2035. DOI:10.2166/wst.2018.115.
[25] Segismundo E Q, Kim L, Jeong S, et al. A laboratory study on the filtration and clogging of the sand-bottom ash mixture for stormwater infiltration filter media[J].Water, 2017, 9(1): 32. DOI:10.3390/w9010032.
[26] Payne E G I, Hatt B E, Deletic A, et al. Adoption guidelines for stormwater biofiltration systems[M]. Melbourne,Australia: Cooperative Research Centre for Water Sensitive Cities, 2015:77-85.
[27] 王肖. 复合MBR强化去除污水中残留抗生素的效果研究[D]. 南京: 东南大学, 2015.
Wang X.Research on the enhanced removal of antibiotic residues in wastewater by new composite MBR[D]. Nanjing: Southeast University, 2015.(in Chinese)
[28] Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron[J].Environmental Science & Technology, 2008, 42(15): 5384-5389.
[29] Zhang J X, Zhang Y B, Quan X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment[J].Chemical Engineering Journal, 2011, 174(1): 159-165. DOI:10.1016/j.cej.2011.08.069.
[30] Zhang Y B, Jing Y W, Quan X, et al. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater[J].Water Science and Technology, 2011, 63(4): 741-746. DOI:10.2166/wst.2011.301.
[31] Zhou L J, Ying G G, Liu S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J].Journal of Chromatography A, 2012, 1244: 123-138. DOI:10.1016/j.chroma.2012.04.076.
[32] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology, 1993, 59(3): 695-700. DOI:10.1128/aem.59.3.695-700.1993.
[33] Throbäck I N, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. DOI:10.1016/j.femsec.2004.04.011.
[34] Henry S, Bru D, Stres B, et al. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils[J].Applied and Environmental Microbiology, 2006, 72(8): 5181-5189. DOI:10.1128/AEM.00231-06.
[35] Vaclavik E, Halling-Sørensen B, Ingerslev F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil[J].Chemosphere, 2004, 56(7): 667-676. DOI:10.1016/j.chemosphere.2004.02.018.
[36] Liu B, Li Y X, Zhang X L, et al. Effects of chlortetracycline on soil microbial communities: Comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM[J].European Journal of Soil Biology, 2015, 68: 69-76. DOI:10.1016/j.ejsobi.2015.01.002.
[37] Fang H, Han Y L, Yin Y M, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J].Chemosphere, 2014, 96: 51-56. DOI:10.1016/j.chemosphere.2013.07.016.
[38] Li H, Davis A P. Water quality improvement through reductions of pollutant loads using bioretention[J].Journal of Environmental Engineering, 2009, 135(8): 567-576. DOI:10.1061/(ASCE)EE.1943-7870.0000026.
[39] Melchior M B, Vaarkamp H, Fink-Gremmels J. Biofilms: A role in recurrent mastitis infections?[J].The Veterinary Journal, 2006, 171(3): 398-407. DOI:10.1016/j.tvjl.2005.01.006.
[40] Wu S, Li X J, Gunawardana M, et al. Beta-lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism[J].PLoS One, 2014, 9(7): e99204. DOI:10.1371/journal.pone.0099204.
[41] Rachid S, Ohlsen K, Witte W, et al. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis[J].Antimicrobial Agents and Chemotherapy, 2000, 44(12): 3357-3363. DOI:10.1128/aac.44.12.3357-3363.2000.
[42] Yang Y F, Peng H, Niu J F, et al. Promoting nitrogen removal during Fe(Ⅲ)reduction coupled to anaerobic ammonium oxidation(Feammox)by adding anthraquinone-2, 6-disulfonate(AQDS)[J].Environmental Pollution, 2019, 247: 973-979. DOI:10.1016/j.envpol.2019.02.008.
[43] 侯玉超. 抗生素胁迫下金黄色葡萄球菌生物被膜形成的分子调控机制[D]. 广州: 华南理工大学, 2018.
Hou Y C. The molecular regulation mechanism of staphylococcus aureus biofilm formation under antibiotic stress[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[44] Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff[J].Water Environment Research, 2003, 75(4): 355-367. DOI:10.2175/106143003x141169.
[45] Wang C S, Wang F, Qin H P, et al. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems[J].Water, 2018, 10(2): 162. DOI:10.3390/w10020162.
[46] Lucas W C, Greenway M. Phosphorus retention by bioretention mesocosms using media formulated for phosphorus sorption: Response to accelerated loads[J].Journal of Irrigation and Drainage Engineering-asce, 2011, 137(3): 144-153. DOI:10.1061/(ASCE)IR.1943-4774.0000243.
[47] Thiele S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem[J].Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594. DOI:10.1002/1522-2624(200012)163:6589::AID-JPLN589>3.0.CO;2-5.
[48] Goh K L, Aswathi M K, de Silva R T, et al. Models for tetracycline in aquatic environments[J]. Water Air and Soil Pollution, 1985, 32(3/4):303 -314.
[49] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270. DOI:10.3321/j.issn:1000-0933.2006.01.032.
Wang R, Liu T Z, Wang T. The fate of antibiotics in environment and its ecotoxicology: A review[J]. Acta Ecologica Sinica, 2006, 26(1): 265-270. DOI:10.3321/j.issn:1000-0933.2006.01.032. (in Chinese)
[50] Ocampo-Perez R, Rivera-Utrilla J, Gomez-Pacheco C V, et al. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase[J].Chemical Engineering Journal, 2012, 213(213): 88-96. DOI:10.1016/j.cej.2012.09.072.
[51] Batt A L, Kim S, Aga D S. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J].Environmental Science & Technology, 2006, 40(23): 7367-7373. DOI:10.1021/es060835v.
[52] Fernandez-Fontaina E, Omil F, Lema J M, et al. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants[J].Water Research, 2012, 46(16): 5434-5444. DOI:10.1016/j.watres.2012.07.037.
[53] Kassotaki E, Buttiglieri G, Ferrando-Climent L, et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products[J].Water Research, 2016, 94: 111-119. DOI:10.1016/j.watres.2016.02.022.
[54] Teixeira S, Delerue-Matos C, Santos L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon[J].Science of The Total Environment, 2019, 646: 168-176. DOI:10.1016/j.scitotenv.2018.07.204.
[55] 姜丽慧. 废活性炭微波再生工艺优化及再生机理研究[D]. 济南: 山东建筑大学, 2019.
Jiang L H.Optimization of microwave regeneration process and study on regeneration mechanism of waste activated carbon[D]. Jinan: Shandong Jianzhu University, 2019.(in Chinese)
[56] 李碟, 卢钧, 刘晓琛, 等. 饱和粉末活性炭电化学再生研究[J]. 环境污染与防治, 2020, 42(4): 417-421, 425. DOI:10.15985/j.cnki.1001-3865.2020.04.005.
Li D, Lu J, Liu X C, et al. Study on electrochemical regeneration of saturated powdered activated carbon[J]. Environmental Pollution and Control, 2020, 42(4): 417-421, 425. DOI:10.15985/j.cnki.1001-3865.2020.04.005. (in Chinese)
[57] Yang Z C, Sun H M, Wu W Z. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods[J].Environmental Science and Pollution Research, 2020, 27(17): 21560-21569. DOI:10.1007/s11356-020-08290-6.