[1]许妍,席慕华,耿冲冲,等.无植物生物滞留池去除生活污水中典型抗生素及其效能强化[J].东南大学学报(自然科学版),2020,50(4):748-759.[doi:10.3969/j.issn.1001-0505.2020.04.020]
 Xu Yan,Xi Muhua,Geng Chongchong,et al.Removals of typical antibiotics in sewage by unplanted bioretention cells: Efficiency and its enhancement[J].Journal of Southeast University (Natural Science Edition),2020,50(4):748-759.[doi:10.3969/j.issn.1001-0505.2020.04.020]
点击复制

无植物生物滞留池去除生活污水中典型抗生素及其效能强化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第4期
页码:
748-759
栏目:
环境科学与工程
出版日期:
2020-07-20

文章信息/Info

Title:
Removals of typical antibiotics in sewage by unplanted bioretention cells: Efficiency and its enhancement
作者:
许妍1席慕华1耿冲冲2徐磊1刘哲铭1傅大放1王亚军2
1东南大学土木工程学院, 南京 210096; 2兰州理工大学土木工程学院, 兰州730050
Author(s):
Xu Yan1 Xi Muhua1 Geng Chongchong2 Xu Lei1 Liu Zheming1 Fu Dafang1 Wang Yajun2
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
生物滞留池 磺胺甲恶唑 四环素
Keywords:
bioretention cells sulfamethoxazole tetracycline
分类号:
X703
DOI:
10.3969/j.issn.1001-0505.2020.04.020
摘要:
传统生物滞留池氮磷去除效果差,对抗生素等新兴污染物的去除效能尚不清晰,通过添加活性炭层、铁粒构建微生物燃料电池改进生物滞留池,考察了其对化学需氧量(COD)、氨氮(NH+4-N)、总氮(TN)、总磷(TP)、磺胺甲恶唑(SMX)、四环素(TC)的去除效能.结果表明,较常规生物滞留池,强化型生物滞留池对TP的去除率提高了20%,稳定运行105 d 且无释磷现象;在进水投加0.8 mg/L抗生素(SMX/TC)的条件下,强化型生物滞留池对SMX和TC的去除率分别为99.62%和99.67%,较常规生物滞留池分别提高了67.66%和35.24%;投加SMX/TC并未对强化型生物滞留池COD、TP的去除产生抗生素胁迫,且对TN和NH+4-N的去除产生显著性促进作用,去除率分别提高了29.47%和26.09%.
Abstract:
Traditional bioretention cells exhibt less effective removals of nitrogen and phosphorous. Also, the performance of bioretention cells on emerging pollutants, such as antibiotics, has not been comprehensively examined. A modified bioretention cell was constructed by introducing activated carbon layers andiron scraps to form a microbial fuel cell. The performance of the traditional and the modified bioretention cells was evaluated by analyzing effluent chemical oxygen demand(COD), total nitrogen(TN), total phosphorus(TP), ammonia(NH+4-N)as well as sulfamethoxazole(SMX)and tetracycline(TC). The results show that the modified bioretention cells improve the removal efficiency of TP by 20% and has been running stably for 105 d without apparent phosphorus release. With the loading of 0.8 mg/L antibiotic(SMX/TC), the removal efficiencies of SMX and TC in the modified bioretention cells reach 99.62% and 99.67%, respectively. Compared with the traditional bioretention cells, SMX and TC removals in the modified bioretention cells increase by 67.66% and 35.24%, respectively. Meanwhile, the removals of COD and TP are not negatively affected by the antibiotics(SMX/TC)loading in the modified bioretention cells. Notably, the exposure of low levels of antibiotics(0.8 mg/L)significantly improves the removals of TN and NH+4-N in the modified bioretention cells. The removal efficiencies increase by 29.47 % and 26.09 %, respectively.

参考文献/References:

[1] Davis A P, Hunt W F, Traver R G, et al. Bioretention technology: Overview of current practice and future needs[J].Journal of Environmental Engineering, 2009, 135(3): 109-117. DOI:10.1061/(ASCE)0733-9372(2009)135:3(109).
[2] Lee J, Gil K. Evaluating bioretention hydrology and nutrient removal for restoring wetland function at artificial rainfall[J].Ecological Engineering, 2020, 150: 105823. DOI:10.1016/j.ecoleng.2020.105823.
[3] 张忠祥. 生物滞留池处理乡村散养家禽径流污染的试验研究[D]. 南京: 东南大学, 2017.
  Zhang Z X.Experimental study on treatment of abandoned poultry runoff pollution in rural area by bioretention ponds[D]. Nanjing: Southeast University, 2017.(in Chinese)
[4] Hunt W F, Jarrett A R, Smith J T, et al. Evaluating bioretention hydrology and nutrient removal at three field sites in north Carolina[J].Journal of Irrigation and Drainage Engineering—ASCE, 2006, 132(6): 600-608. DOI:10.1061/(ASCE)0733-9437(2006)132:6(600).
[5] 张弘. 生物滞留池处理化粪池出水及其效能强化研究[D]. 南京: 东南大学, 2017.
  Zhang H. The study on bioretention treating effluent from septic tank and methods to enhance its pollutant removal efficiency[D]. Nanjing: Southeast University, 2017.(in Chinese)
[6] Palmer E T, Poor C J, Hinman C, et al. Nitrate and phosphate removal through enhanced bioretention media: Mesocosm study[J].Water Environment Research, 2013, 85(9): 823-832.
[7] Payne E G I, Fletcher T D, Cook P L M, et al. Processes and drivers of nitrogen removal in stormwater biofiltration[J].Critical Reviews in Environmental Science and Technology, 2014, 44(7): 796-846. DOI:10.1080/10643389.2012.741310.
[8] 孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究[J]. 北京师范大学学报(自然科学版), 2013, 49(2): 286-291.
  Meng Y Y, Wang H X, Zhang S H, et al. Experiments on detention, retention and purifying effects of urban road runoff based on bioretention[J].Journal of Beijing Normal University(Natural Science), 2013, 49(2): 286-291.(in Chinese)
[9] Hunt W F, Smith J T, Jadlocki S J, et al. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, N.C[J].Journal of Environmental Engineering, 2008, 134(5): 403-408. DOI:10.1061/(ASCE)0733-9372(2008)134:5(403).
[10] 李俊奇, 向璐璐, 毛坤, 等. 雨水花园蓄渗处置屋面径流案例分析[J]. 中国给水排水, 2010, 26(10): 129-133.
  Li J Q, Xiang L L, Mao K, et al. Case study on rain garden storage-infiltration system for disposal of roof runoff[J]. China Water & Wastewater, 2010, 26(10): 129-133.(in Chinese)
[11] 谢辉, 包樱钰, 李菲菲, 等. A2/O生活污水处理系统中抗生素抗性基因的分布及去除[J]. 环境工程, 2019, 37(12): 80-89. DOI:10.13205/j.hjgc.201912015.
Xie H, Bao Y Y, Li F F, et al. Distribution and removal of antibiotic resistance genes in an A2/O domestic wastewater treatment plant[J]. Environmental Engineering, 2019, 37(12): 80-89. DOI:10.13205/j.hjgc.201912015. (in Chinese)
[12] 陈军. 生活污水中抗生素和耐药基因的人工湿地去除机制与系统优化[D]. 北京: 中国科学院大学, 2017.
  Chen J. Removal of antibiotics and ARGs from domestic sewage by constructed wetlands: Removal mechanism and system optimization[D]. Beijing: University of Chinese Academy of Sciences, 2017.(in Chinese)
[13] 李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29. DOI:10.19672/j.cnki.1003-6504.2019.03.003.
Li S J, Xie W M. Research advances in antibiotics removal in wastewater treatment plants: A review[J]. Environmental Science & Technology, 2019, 42(3): 17-29. DOI:10.19672/j.cnki.1003-6504.2019.03.003. (in Chinese)
[14] 丁紫荣, 贺德春, 万大娟, 等. 中型污水处理厂中药物和个人护理品的分布与去除[J]. 环境工程学报, 2015, 9(3): 1247-1252.
  Ding Z R, He D C, Wan D J, et al. Occurrence and removal of pharmaceuticals and personal care production by medium-sized sewage treatment plants[J]. Chinese Journal of Environmental Engineering, 2015, 9(3): 1247-1252.(in Chinese)
[15] de Souza Santos L V, Teixeira D C, Jacob R S, et al. Evaluation of the aerobic and anaerobic biodegradability of the antibiotic norfloxacin[J].Water Science and Technology, 2014, 70(2): 265-271. DOI:10.2166/wst.2014.214.
[16] Sui Q, Zhao W T, Cao X Q, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor[J].Journal of Hazardous Materials, 2017, 323: 99-108. DOI:10.1016/j.jhazmat.2016.03.047.
[17] Baker S, Thomson N, Weill F X, et al. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens[J].Science, 2018, 360(6390): 733-738. DOI:10.1126/science.aar3777.
[18] Manaia C M, Rocha J, Scaccia N, et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box[J].Environment International, 2018, 115: 312-324. DOI:10.1016/j.envint.2018.03.044.
[19] Wu M H, Que C J, Tang L, et al. Distribution, fate, and risk assessment of antibiotics in five wastewater treatment plants in Shanghai, China[J].Environmental Science and Pollution Research International, 2016, 23(18): 18055-18063. DOI:10.1007/s11356-016-6946-0.
[20] Rossmann J, Schubert S, Gurke R, et al. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS[J].Journal of Chromatography, B. Analytical Technologies in the Biomedical and Life Sciences, 2014, 969: 162-170. DOI:10.1016/j.jchromb.2014.08.008.
[21] Hou J, Wang C, Mao D Q, et al. The occurrence and fate of tetracyclines in two pharmaceutical wastewater treatment plants of Northern China[J].Environmental Science and Pollution Research, 2016, 23(2): 1722-1731. DOI:10.1007/s11356-015-5431-5.
[22] Glaister B J, Fletcher T D, Cook P L M, et al. Co-optimisation of phosphorus and nitrogen removal in stormwater biofilters: The role of filter media, vegetation and saturated zone[J].Water Science and Technology, 2014, 69(9): 1961-1969. DOI:10.2166/wst.2014.117.
[23] Kim H, Choi J W, Kim T, et al. Effect of TSS removal from stormwater by mixed media column on T-N, T-P, and organic material removal[J].Water, 2018, 10(8): 1069. DOI:10.3390/w10081069.
[24] Mei Y, Gao L, Zhou H, et al. Ranking media for multi-pollutant removal efficiency in bioretention[J].Water Science and Technology, 2018, 77(8): 2023-2035. DOI:10.2166/wst.2018.115.
[25] Segismundo E Q, Kim L, Jeong S, et al. A laboratory study on the filtration and clogging of the sand-bottom ash mixture for stormwater infiltration filter media[J].Water, 2017, 9(1): 32. DOI:10.3390/w9010032.
[26] Payne E G I, Hatt B E, Deletic A, et al. Adoption guidelines for stormwater biofiltration systems[M]. Melbourne,Australia: Cooperative Research Centre for Water Sensitive Cities, 2015:77-85.
[27] 王肖. 复合MBR强化去除污水中残留抗生素的效果研究[D]. 南京: 东南大学, 2015.
  Wang X.Research on the enhanced removal of antibiotic residues in wastewater by new composite MBR[D]. Nanjing: Southeast University, 2015.(in Chinese)
[28] Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron[J].Environmental Science & Technology, 2008, 42(15): 5384-5389.
[29] Zhang J X, Zhang Y B, Quan X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment[J].Chemical Engineering Journal, 2011, 174(1): 159-165. DOI:10.1016/j.cej.2011.08.069.
[30] Zhang Y B, Jing Y W, Quan X, et al. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater[J].Water Science and Technology, 2011, 63(4): 741-746. DOI:10.2166/wst.2011.301.
[31] Zhou L J, Ying G G, Liu S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J].Journal of Chromatography A, 2012, 1244: 123-138. DOI:10.1016/j.chroma.2012.04.076.
[32] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology, 1993, 59(3): 695-700. DOI:10.1128/aem.59.3.695-700.1993.
[33] Throbäck I N, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. DOI:10.1016/j.femsec.2004.04.011.
[34] Henry S, Bru D, Stres B, et al. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils[J].Applied and Environmental Microbiology, 2006, 72(8): 5181-5189. DOI:10.1128/AEM.00231-06.
[35] Vaclavik E, Halling-Sørensen B, Ingerslev F. Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil[J].Chemosphere, 2004, 56(7): 667-676. DOI:10.1016/j.chemosphere.2004.02.018.
[36] Liu B, Li Y X, Zhang X L, et al. Effects of chlortetracycline on soil microbial communities: Comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM[J].European Journal of Soil Biology, 2015, 68: 69-76. DOI:10.1016/j.ejsobi.2015.01.002.
[37] Fang H, Han Y L, Yin Y M, et al. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J].Chemosphere, 2014, 96: 51-56. DOI:10.1016/j.chemosphere.2013.07.016.
[38] Li H, Davis A P. Water quality improvement through reductions of pollutant loads using bioretention[J].Journal of Environmental Engineering, 2009, 135(8): 567-576. DOI:10.1061/(ASCE)EE.1943-7870.0000026.
[39] Melchior M B, Vaarkamp H, Fink-Gremmels J. Biofilms: A role in recurrent mastitis infections?[J].The Veterinary Journal, 2006, 171(3): 398-407. DOI:10.1016/j.tvjl.2005.01.006.
[40] Wu S, Li X J, Gunawardana M, et al. Beta-lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism[J].PLoS One, 2014, 9(7): e99204. DOI:10.1371/journal.pone.0099204.
[41] Rachid S, Ohlsen K, Witte W, et al. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis[J].Antimicrobial Agents and Chemotherapy, 2000, 44(12): 3357-3363. DOI:10.1128/aac.44.12.3357-3363.2000.
[42] Yang Y F, Peng H, Niu J F, et al. Promoting nitrogen removal during Fe(Ⅲ)reduction coupled to anaerobic ammonium oxidation(Feammox)by adding anthraquinone-2, 6-disulfonate(AQDS)[J].Environmental Pollution, 2019, 247: 973-979. DOI:10.1016/j.envpol.2019.02.008.
[43] 侯玉超. 抗生素胁迫下金黄色葡萄球菌生物被膜形成的分子调控机制[D]. 广州: 华南理工大学, 2018.
  Hou Y C. The molecular regulation mechanism of staphylococcus aureus biofilm formation under antibiotic stress[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[44] Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff[J].Water Environment Research, 2003, 75(4): 355-367. DOI:10.2175/106143003x141169.
[45] Wang C S, Wang F, Qin H P, et al. Effect of saturated zone on nitrogen removal processes in stormwater bioretention systems[J].Water, 2018, 10(2): 162. DOI:10.3390/w10020162.
[46] Lucas W C, Greenway M. Phosphorus retention by bioretention mesocosms using media formulated for phosphorus sorption: Response to accelerated loads[J].Journal of Irrigation and Drainage Engineering-asce, 2011, 137(3): 144-153. DOI:10.1061/(ASCE)IR.1943-4774.0000243.
[47] Thiele S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem[J].Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594. DOI:10.1002/1522-2624(200012)163:6589::AID-JPLN589>3.0.CO;2-5.
[48] Goh K L, Aswathi M K, de Silva R T, et al. Models for tetracycline in aquatic environments[J]. Water Air and Soil Pollution, 1985, 32(3/4):303 -314.
[49] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270. DOI:10.3321/j.issn:1000-0933.2006.01.032.
Wang R, Liu T Z, Wang T. The fate of antibiotics in environment and its ecotoxicology: A review[J]. Acta Ecologica Sinica, 2006, 26(1): 265-270. DOI:10.3321/j.issn:1000-0933.2006.01.032. (in Chinese)
[50] Ocampo-Perez R, Rivera-Utrilla J, Gomez-Pacheco C V, et al. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase[J].Chemical Engineering Journal, 2012, 213(213): 88-96. DOI:10.1016/j.cej.2012.09.072.
[51] Batt A L, Kim S, Aga D S. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J].Environmental Science & Technology, 2006, 40(23): 7367-7373. DOI:10.1021/es060835v.
[52] Fernandez-Fontaina E, Omil F, Lema J M, et al. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants[J].Water Research, 2012, 46(16): 5434-5444. DOI:10.1016/j.watres.2012.07.037.
[53] Kassotaki E, Buttiglieri G, Ferrando-Climent L, et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products[J].Water Research, 2016, 94: 111-119. DOI:10.1016/j.watres.2016.02.022.
[54] Teixeira S, Delerue-Matos C, Santos L. Application of experimental design methodology to optimize antibiotics removal by walnut shell based activated carbon[J].Science of The Total Environment, 2019, 646: 168-176. DOI:10.1016/j.scitotenv.2018.07.204.
[55] 姜丽慧. 废活性炭微波再生工艺优化及再生机理研究[D]. 济南: 山东建筑大学, 2019.
  Jiang L H.Optimization of microwave regeneration process and study on regeneration mechanism of waste activated carbon[D]. Jinan: Shandong Jianzhu University, 2019.(in Chinese)
[56] 李碟, 卢钧, 刘晓琛, 等. 饱和粉末活性炭电化学再生研究[J]. 环境污染与防治, 2020, 42(4): 417-421, 425. DOI:10.15985/j.cnki.1001-3865.2020.04.005.
Li D, Lu J, Liu X C, et al. Study on electrochemical regeneration of saturated powdered activated carbon[J]. Environmental Pollution and Control, 2020, 42(4): 417-421, 425. DOI:10.15985/j.cnki.1001-3865.2020.04.005. (in Chinese)
[57] Yang Z C, Sun H M, Wu W Z. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods[J].Environmental Science and Pollution Research, 2020, 27(17): 21560-21569. DOI:10.1007/s11356-020-08290-6.

备注/Memo

备注/Memo:
收稿日期: 2020-02-07.
作者简介: 许妍(1980—),女,博士,副教授,博士生导师,xuxucalmm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(41671468,41967043)、江苏省自然科学基金资助项目(BK 20171356)、中国科学院科技服务网络计划(STS)区域重点资助项目(KFJ-STS-QYZX-051)、国家重点研发计划“合成生物学”重点专项资助项目(2018YFA0901200)、江苏高校“青蓝工程”资助项目.
引用本文: 许妍,席慕华,耿冲冲,等.无植物生物滞留池去除生活污水中典型抗生素及其效能强化[J].东南大学学报(自然科学版),2020,50(4):748-759. DOI:10.3969/j.issn.1001-0505.2020.04.020.
更新日期/Last Update: 2020-07-20