参考文献/References:
[1] Hu J, Song H, Addison J W, et al. Halonitromethane formation potentials in drinking waters[J].Water Research, 2010, 44(1): 105-114. DOI:10.1016/j.watres.2009.09.006.
[2] 徐斌, 田富箱, 高乃云,等.饮用水中新兴消毒副产物的生成机制与控制理论[M].北京:中国建筑工业出版社, 2018: 4-31.
[3] Marsà A, Cortés C, Teixidó E, et al.In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane[J]. Toxicology in Vitro, 2017, 45: 72-80. DOI:10.1016/j.tiv.2017.08.013.
[4] Yin J B, Wu B, Zhang X X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method[J].Chemosphere, 2017, 185: 20-28. DOI:10.1016/j.chemosphere.2017.06.116.
[5] Dong H Y, Qiang Z M, Lian J F, et al. Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential[J].Water Research, 2017, 119: 83-90. DOI:10.1016/j.watres.2017.04.049.
[6] Woo Y T, Lai D, McLain J L, et al. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products[J].Environmental Health Perspectives, 2002, 110(Suppl 1): 75-87.
[7] Dong H Y, Qiang Z M, Hu J, et al. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes[J].Water Research, 2017, 121: 178-185. DOI:10.1016/j.watres.2017.05.030.
[8] Bond T, Templeton M R, Mokhtar Kamal N H, et al. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis[J].Water Research, 2015, 85: 85-94. DOI:10.1016/j.watres.2015.08.015.
[9] Yang L Y, Chen X M, She Q H, et al. Regulation, formation, exposure, and treatment of disinfection by-products(DBPs)in swimming pool waters: A critical review[J].Environment International, 2018, 121: 1039-1057. DOI:10.1016/j.envint.2018.10.024.
[10] Krasner S W, Westerhoff P, Chen B Y, et al. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents[J].Environmental Science & Technology, 2009, 43(21): 8320-8325. DOI:10.1021/es901611m.
[11] Liviac D, Wagner E D, Mitch W A, et al. Genotoxicity of water concentrates from recreational pools after various disinfection methods[J].Environmental Science & Technology, 2010, 44(9): 3527-3532. DOI:10.1021/es903593w.
[12] Deng L, Wu Z R, Yang C Q, et al. Photodegradation of trace trichloronitromethane in water under UV irradiation[J].Journal of Chemistry, 2014, 2014: 1-7. DOI:10.1155/2014/283496.
[13] Deng L, Wen L J, Dai W J, et al. Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection[J].Environmental Science and Pollution Research, 2018, 25(23): 23227-23235. DOI:10.1007/s11356-018-2397-0.
[14] Jin J, El-Din M G, Bolton J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896. DOI:10.1016/j.watres.2010.12.008.
[15] Fang J Y, Ling L, Shang C. Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis[J].Water Research, 2013, 47(3): 1257-1266. DOI:10.1016/j.watres.2012.11.050.
[16] Deng L, Wu Z R, Yang C Q, et al. Photodegradation of trace trichloronitromethane in water under UV irradiation[J].Journal of Chemistry, 2014, 2014: 1-7. DOI:10.1155/2014/283496.
[17] Manasfi T, de Méo M, Di Giorgio C, et al. Assessing the genotoxicity of two commonly occurring byproducts of water disinfection: Chloral hydrate and bromal hydrate[J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 813: 37-44. DOI:10.1016/j.mrgentox.2016.11.009.
[18] Manasfi T, Temime-Roussel B, Coulomb B, et al. Occurrence of brominated disinfection byproducts in the air and water of chlorinated seawater swimming pools[J].International Journal of Hygiene and Environmental Health, 2017, 220(3): 583-590. DOI:10.1016/j.ijheh.2017.01.008.
[19] Aleboyeh A, Moussa Y, Aleboyeh H. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74[J]. Dyes and Pigments, 2005, 66(2): 129-134. DOI:10.1016/j.dyepig.2004.09.008.
[20] Mcmurry J. Organic chemistry [M].Belmont, CA, USA: Thomson Brooks/Cole,2008: 71-93.
[21] Fang J Y, Fu Y, Shang C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J].Environmental Science & Technology, 2014, 48(3): 1859-1868. DOI:10.1021/es4036094.
[22] Jin J, El-Din M G, Bolton J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896. DOI:10.1016/j.watres.2010.12.008.
[23] Al-Ghouti M A, Al Disi Z A, Al-Kaabi N, et al. Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits[J].Chemical Engineering Journal, 2017, 308: 463-475. DOI:10.1016/j.cej.2016.09.091.
[24] Shan J H, Hu J, Sule Kaplan-Bekaroglu S, et al. The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars[J].Chemosphere, 2012, 86(4): 323-328. DOI:10.1016/j.chemosphere.2011.09.004.
[25] Fang J Y, Zhao Q, Fan C, et al. Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps[J].Chemosphere, 2017, 183: 582-588. DOI:10.1016/j.chemosphere.2017.05.136.
[26] Xiang H M, Shao Y S, Gao N Y, et al. The influence of bromide on the degradation of sulfonamides in UV/free chlorine treatment: Degradation mechanism, DBPs formation and toxicity assessment[J].Chemical Engineering Journal, 2019, 362: 692-701. DOI:10.1016/j.cej.2019.01.079.