[1]韦芳芳,朱德昌,王海涛,等.冻融环境下CFRP板-钢界面黏结性能试验研究[J].东南大学学报(自然科学版),2020,50(5):803-807.[doi:10.3969/j.issn.1001-0505.2020.05.002]
 Wei Fangfang,Zhu Dechang,Wang Haitao,et al.Experimental study on bond behavior of CFRP plate-steel interface in freeze-thaw environment[J].Journal of Southeast University (Natural Science Edition),2020,50(5):803-807.[doi:10.3969/j.issn.1001-0505.2020.05.002]
点击复制

冻融环境下CFRP板-钢界面黏结性能试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
803-807
栏目:
土木工程
出版日期:
2020-09-20

文章信息/Info

Title:
Experimental study on bond behavior of CFRP plate-steel interface in freeze-thaw environment
作者:
韦芳芳朱德昌王海涛卞致宁
河海大学土木与交通学院, 南京 210098
Author(s):
Wei Fangfang Zhu Dechang Wang Haitao Bian Zhining
College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
关键词:
冻融环境 CFRP板 双剪节点 黏结性能
Keywords:
freeze-thaw environment carbon fiber reinforced polymer(CFRP) steel double-shear joint bond behavior
分类号:
TU399
DOI:
10.3969/j.issn.1001-0505.2020.05.002
摘要:
为了研究冻融环境对碳纤维增强复材CFRP板与钢界面黏结性能的影响,进行了12个CFRP板-钢双剪节点的测试,分析了失效模式、极限荷载、CFRP板应变、界面剪应力和黏结-滑移关系. 试验结果表明:冻融循环次数对界面失效模式基本没有影响,所有试件均为胶层失效.随着冻融循环次数的增加,结构胶力学性能和界面极限荷载均逐渐下降,300次冻融循环后结构胶弹性模量和抗拉强度分别下降9.3%和10.3%,界面极限荷载下降14.5%;冻融环境对CFRP板应变分布、界面剪应力分布和黏结-滑移关系的曲线形状没有影响,黏结-滑移关系曲线近似为双线性,但冻融循环作用会导致CFRP板最大应变、最大界面剪应力及其对应滑移和最大滑移下降.
Abstract:
To investigate the effect of the freeze-thaw environment on the bond behavior between the carbon fiber reinforced polymer(CFRP)plate and steel, 12 CFRP plate-steel double-shear joints were tested. The failure mode, the ultimate load, the CFRP plate strain, the interfacial shear stress and the bond-slip relationship were analyzed. The experimental results show that the number of the freeze-thaw cycles has no effect on the failure mode and all specimens exhibit cohesive failure. However, with the increase in the number of freeze-thaw cycles, the mechanical properties of the adhesive and the ultimate load of the interface decrease. After 300 freeze-thaw cycles, the elastic modulus and the tension strength of the adhesive decrease by 9.3% and 10.3% while the ultimate load decreases by 14.5%. The freeze-thaw environment has no effect on the curve shapes of the CFRP strain distribution, the interfacial shear stress distribution and the bond-slip relationship. The bond-slip relationship curve is approximately bilinear. The freeze-thaw environment can reduce the maximum strain on CFRP plate, the maximum interfacial shear stress and the corresponding slip, and the maximum slip.

参考文献/References:

[1] Teng J, Yu T, Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78(6): 131-143. DOI:10.1016/j.jcsr.2012.06.011.
[2] 吴刚, 刘海洋, 吴智深, 等. 不同纤维增强复合材料加固钢梁疲劳性能试验研究[J]. 土木工程学报, 2012, 45(4): 21-28. DOI:10.15951/j.tmgcxb.2012.04.010.
Wu G, Liu H Y, Wu Z S, et al. Experimental study of the fatigue performance of steel beams strengthened with different fiber reinforced polymers[J].China Civil Engineering Journal, 2012, 45(4): 21-28. DOI:10.15951/j.tmgcxb.2012.04.010. (in Chinese)
[3] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12): 3534-3546. DOI:10.13801/j.cnki.fhclxb.20180316.001.
Li C X,Ke L, Chen Z Y, et al. Experimental study and numerical simulation for bond behavior of interface between CFRP and steel[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3534-3546. DOI:10.13801/j.cnki.fhclxb.20180316.001. (in Chinese)
[4] Wang H T, Wu G, Dai Y T, et al. Experimental study on bond behavior between CFRP plates and steel substrates using digital image correlation[J].Journal of Composites for Construction, 2016, 20(6): 04016054. DOI:10.1061/(asce)cc.1943-5614.0000701.
[5] Wang H T, Wu G. Bond-slip models for CFRP plates externally bonded to steel substrates[J].Composite Structures, 2018, 184: 1204-1214. DOI:10.1016/j.compstruct.2017.10.033.
[6] Fawzia S, Zhao X, Al-Mahaidi R. Bond-slip models for double strap joints strengthened by CFRP [J]. Composite Structures, 2010, 92(9): 2137-2145. DOI: 10.1016/j.compstruct.2009.09.042.
[7] Wu C, Zhao X L,Duan W, et al. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures, 2012, 51: 147-157. DOI:10.1016/j.tws.2011.10.010.
[8] Al-Shawaf A, Zhao X L. Adhesive rheology impact on wet lay-up CFRP/steel joints’ behaviour under infrastructural subzero exposures [J]. Composites Part B-Engineering, 2013, 47: 207-219. DOI: 10.1016/j.compositesb.2012.11.012.
[9] Nguyen T C, Bai Y, Zhao X L, et al. Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints[J].Composite Structures, 2012, 94(12): 3563-3573. DOI:10.1016/j.compstruct.2012.05.036.
[10] Pang Y Y, Wu G, Wang H T, et al. Interfacial bond-slip degradation relationship between CFRP plate and steel plate under freeze-thaw cycles[J]. Construction and Building Materials, 2019, 214: 242-253. DOI:10.1016/j.conbuildmat.2019.04.114.
[11] Pang Y Y, Wu G, Wang H T, et al. Experimental study on the bond behavior of the CFRP-steel interface under the freeze-thaw cycles[J]. Journal of Composite Materials, 2020, 54(1): 13-29. DOI:10.1177/0021998319851191.
[12] 朱德昌. 冻融环境下CFRP板加固损伤钢板疲劳性能研究[D]. 南京:河海大学, 2019.
  Zhu D C. Study on fatigue behavior of damaged steel plates strengthened by CFRP plates under freezing and thawing Environment [D]. Nanjing: Hohai University, 2019.(in Chinese)
[13] 中华人民共和国住房和城乡建设部. GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2010.
[14] Zhao X L, Zhang L. State-of-the-art review on FRP strengthened steel structures[J].Engineering Structures, 2007, 29(8): 1808-1823. DOI:10.1016/j.engstruct.2006.10.006.

备注/Memo

备注/Memo:
收稿日期: 2020-03-31.
作者简介: 韦芳芳(1978—),女,博士,副教授,ffwei@hhu.edu.cn.
基金项目: 国家自然科学基金资助项目(51608168,51708174)、中央高校基本科研业务费专项基金资助项目(2017B16014).
引用本文: 韦芳芳,朱德昌,王海涛,等.冻融环境下CFRP板-钢界面黏结性能试验研究[J].东南大学学报(自然科学版),2020,50(5):803-807. DOI:10.3969/j.issn.1001-0505.2020.05.002.
更新日期/Last Update: 2020-09-20