[1]徐善华,张海江,张辙洵,等.静载作用下含中心裂纹锈蚀钢板断裂性能退化机理与退化规律[J].东南大学学报(自然科学版),2020,50(5):808-813.[doi:10.3969/j.issn.1001-0505.2020.05.003]
 Xu Shanhua,Zhang Haijiang,Zhang Zhexun,et al.Fracture property degradation mechanism and degradation law of corroded steel plates with central cracks under static tension load[J].Journal of Southeast University (Natural Science Edition),2020,50(5):808-813.[doi:10.3969/j.issn.1001-0505.2020.05.003]
点击复制

静载作用下含中心裂纹锈蚀钢板断裂性能退化机理与退化规律()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
808-813
栏目:
材料科学与工程
出版日期:
2020-09-20

文章信息/Info

Title:
Fracture property degradation mechanism and degradation law of corroded steel plates with central cracks under static tension load
作者:
徐善华张海江张辙洵温雅鑫
西安建筑科技大学土木工程学院, 西安 710000
Author(s):
Xu Shanhua Zhang Haijiang Zhang Zhexun Wen Yaxin
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710000, China
关键词:
锈蚀钢材 断裂力学 断裂性能退化 残余名义断裂韧度 退化规律
Keywords:
corroded steel fracture mechanics fracture property degradation residual nominal fracture toughness degradation law
分类号:
TU511.3
DOI:
10.3969/j.issn.1001-0505.2020.05.003
摘要:
以带中心裂纹的锈蚀钢板为研究对象,运用断裂力学的理论和参量,对锈蚀钢板断裂性能的退化机理与退化规律进行研究,建立了锈蚀钢材残余断裂韧度退化的经验模型.结果表明,锈蚀会导致应力强度因子的幅值增加,增大裂纹尖端应力场和位移场的强度,加速既有裂纹的扩展.对于未锈蚀模型和均匀锈蚀模型,裂纹尖端应力强度因子在厚度方向上从模型内部到模型表面逐渐减小;对于点蚀模型,裂纹尖端应力强度因子在厚度方向上从模型内部到表面锈坑底部逐渐增大.锈蚀还会影响J积分-荷载曲线,使J积分值更快达到其临界值,导致钢板断裂提前发生.断裂韧度退化的经验模型结果与断裂试验结果较为符合.
Abstract:
The corroded steel plates with central cracks were prepared to investigate the fracture property degradation mechanism and degradation law of corroded steel plates using the theory and parameters of fracture mechanics. An empirical model for nominal fracture toughness degradation of corroded steel was established. The results show that corrosion can increase the amplitude of the stress intensity factor(SIF), the intensity of the crack tip field and the displacement field, thus accelerating the propagation of existing cracks. For the non-corrosion model and the general-corrosion model, the SIF value at the crack tip decreases gradually from the model interior to the external surface in the thickness direction. For the pitting-corrosion model, the SIF value at the crack tip increases gradually from the model interior to the pit bottom in the thickness direction. Corrosion makes the J-load curves reach the critical value faster, thus leading to the premature fracture of steel plates earlier. The results of the empirical model of fracture toughness degradation agrees well with those of the fracture tests.

参考文献/References:

[1] 侯保荣,路东柱.我国腐蚀成本及其防控策略[J].中国科学院院刊,2018,33(6):601-609. DOI:10.16418/j.issn.1000-3045.2018.06.008.
Hou B R, Lu D Z. Corrosion cost and preventive strategies in China[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(6): 601-609. DOI:10.16418/j.issn.1000-3045.2018.06.008. (in Chinese)
[2] 侯保荣.中国腐蚀成本[M].北京:科学出版社,2019:1-12.
[3] Appuhamy J M R S, Kaita T, Ohga M, et al. Prediction of residual strength of corroded tensile steel plates[J]. International Journal of Steel Structures, 2011, 11(1): 65-79. DOI:10.1007/s13296-011-1006-6.
[4] Garbatov Y, Guedes Soares C, Parunov J, et al. Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014, 85: 296-303. DOI:10.1016/j.corsci.2014.04.031.
[5] 徐善华,张宗星,秦广冲.考虑腐蚀钢板表面形貌的三维逆向重建及力学性能退化分析[J].材料科学与工程学报,2017,35(1):81-86. DOI:10.14136/j.cnki.issn1673-2812.2017.01.016.
Xu S H, Zhang Z X, Qin G C. Three-dimensional reconstruction and degradation of mechanical properties based on real surface of corrosion steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 81-86. DOI:10.14136/j.cnki.issn1673-2812.2017.01.016. (in Chinese)
[6] Wang Y K, Wharton J A,Shenoi R A. Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: A review[J]. Corrosion Science, 2014, 86: 42-60. DOI:10.1016/j.corsci.2014.04.043.
[7] Qin G C,Xu S H, Yao D Q, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125: 205-217. DOI:10.1016/j.jcsr.2016.06.018.
[8] Kim I, Dao D K,Jeong Y, et al. Effect of corrosion on the tension behavior of painted structural steel members[J]. Journal of Constructional Steel Research, 2017, 133: 256-268. DOI:10.1016/j.jcsr.2017.02.005.
[9] Xu S H, Wang Y D. Estimating the effects of corrosion pits on the fatigue life of steel plate based on the 3D profile[J]. International Journal of Fatigue, 2015, 72: 27-41. DOI:10.1016/j.ijfatigue.2014.11.003.
[10] Xu S H, Qin G C, Zhang Z X. Experimental research on hysteretic characteristics of steel plates artificially corroded by neutral salt spray[J]. Advances in Materials Science and Engineering, 2016, 2016: 7645763. DOI:10.1155/2016/7645763.
[11] Nakai T, Matsushita H, Yamamoto N. Effect of pitting corrosion on strength of web plates subjected to patch loading[J]. Thin-walled Structures, 2006, 44(1): 10-19. DOI:10.1016/j.tws.2005.09.004.
[12] Nakai T, Matsushita H, Yamamoto N. Effect of pitting corrosion on ultimate strength of web plates subjected to shear loading[J]. Key Engineering Materials, 2007, 340/341: 489-494. DOI:10.4028/www.scientific.net/kem.340-341.489.
[13] 武萍,于峰.锈蚀槽钢梁承载性能研究[J].钢结构,2014,29(6):22-27. DOI:10.13206/j.gjg201406006.
Wu P, Yu F. Study on bearing capacity of corroded channel steel beams[J].Steel Construction, 2014, 29(6): 22-27. DOI:10.13206/j.gjg201406006. (in Chinese)
[14] 何伟南,何建胜,张征文,等.点蚀钢梁承载力试验与有限元分析[J].钢结构,2017,32(5):106-109. DOI:10.13206/j.gjg201705023.
He W N, He J S, Zhang Z W, et al. Experimental study and finite element analysis of the bearing capacity of pitting steel girder[J].Steel Construction, 2017, 32(5): 106-109. DOI:10.13206/j.gjg201705023. (in Chinese)
[15] 徐善华,王皓,薛南.锈蚀钢材偏心受压钢柱承载性能退化规律[J].哈尔滨工业大学学报,2016,48(6):157-163,169. DOI:10.11918/j.issn.0367-6234.2016.06.025.
Xu S H, Wang H, Xue N. Deterioration law of bearing properties for corroded eccentric steel columns[J]. Journal of Harbin Institute of Technology, 2016, 48(6): 157-163,169. DOI:10.11918/j.issn.0367-6234.2016.06.025. (in Chinese)
[16] Cerit M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit[J]. Corrosion Science, 2013, 67: 225-232. DOI:10.1016/j.corsci.2012.10.028.
[17] Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit[J].Corrosion Science, 2010, 52(4): 1492-1498. DOI:10.1016/j.corsci.2009.12.004.
[18] 郦正能.应用断裂力学[M].北京:北京航空航天大学出版社,2012:18-26.
[19] Courtin S, Gardin C, Bezine G, et al. Advantages of the J-integral approach for calculating stress intensity factors when using the commercial finite element software ABAQUS[J]. Engineering Fracture Mechanics, 2005, 72(14): 2174-2185. DOI:10.1016/j.engfracmech.2005.02.003.
[20] Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J].Journal of Applied Mechanics, 1968, 35(2): 379-386. DOI:10.1115/1.3601206.

相似文献/References:

[1]张廼龙,郭小明,王向东.黏土坡稳定性的断裂力学分析[J].东南大学学报(自然科学版),2010,40(5):1029.[doi:10.3969/j.issn.1001-0505.2010.05.028]
 Zhang Nailong,Guo Xiaoming,Wang Xiangdong.Fracture mechanics analysis on stability of clay slope with crack[J].Journal of Southeast University (Natural Science Edition),2010,40(5):1029.[doi:10.3969/j.issn.1001-0505.2010.05.028]
[2]赵永利,孙伟,罗欣.高强及钢纤维高强混凝土K1C、δ1C的研究[J].东南大学学报(自然科学版),1997,27(2):133.[doi:10.3969/j.issn.1001-0505.1997.02.026]
 Study on K 1C and δ 1C of HSC and SFRHSC[J].Journal of Southeast University (Natural Science Edition),1997,27(5):133.[doi:10.3969/j.issn.1001-0505.1997.02.026]
[3]赵晓华,薛国亚,宋启根.带裂缝钢筋混凝土板的断裂力学分析[J].东南大学学报(自然科学版),1994,24(3):8.[doi:10.3969/j.issn.1001-0505.1994.03.002]
 Zhao Xiaohua,Xue,Guoya,et al.Analysis of Reinforced Concrete Plate with Cracks by Fracture Mechanics[J].Journal of Southeast University (Natural Science Edition),1994,24(5):8.[doi:10.3969/j.issn.1001-0505.1994.03.002]
[4]王佩纶.显象管玻壳的强度问题[J].东南大学学报(自然科学版),1980,10(2):1.[doi:10.3969/j.issn.1001-0505.1980.02.001]
 Wang Pei-lun.Robustness of Kinescope Glass Shell[J].Journal of Southeast University (Natural Science Edition),1980,10(5):1.[doi:10.3969/j.issn.1001-0505.1980.02.001]
[5]王综轶,王元清,杜新喜,等.不同温度下有机玻璃厚板的平面应变断裂韧性试验[J].东南大学学报(自然科学版),2018,48(5):864.[doi:10.3969/j.issn.1001-0505.2018.05.013]
 Wang Zongyi,Wang Yuanqing,Du Xinxi,et al.Plain-strain fracture toughness tests of thick acrylic sheets at different temperatures[J].Journal of Southeast University (Natural Science Edition),2018,48(5):864.[doi:10.3969/j.issn.1001-0505.2018.05.013]
[6]邓扬,李爱群.基于断裂力学和长期监测数据的钢箱梁桥顶板U肋焊缝疲劳可靠度分析[J].东南大学学报(自然科学版),2019,49(1):68.[doi:10.3969/j.issn.1001-0505.2019.01.010]
 Deng Yang,Li Aiqun.Fatigue reliability analysis for welds of U ribs in steel box girders based on fracture mechanics and long-term monitoring data[J].Journal of Southeast University (Natural Science Edition),2019,49(5):68.[doi:10.3969/j.issn.1001-0505.2019.01.010]

备注/Memo

备注/Memo:
收稿日期: 2020-02-17.
作者简介: 徐善华(1963—),男,博士,教授,博士生导师,xushanhua@163.com.
基金项目: 国家自然科学基金资助项目(51678477)、陕西省教育厅重点实验室科学研究计划资助项目(17JS061).
引用本文: 徐善华,张海江,张辙洵,等.静载作用下含中心裂纹锈蚀钢板断裂性能退化机理与退化规律[J].东南大学学报(自然科学版),2020,50(5):808-813. DOI:10.3969/j.issn.1001-0505.2020.05.003.
更新日期/Last Update: 2020-09-20