[1]杜广印,蔡俊,孙长申,等.透水混凝土桩复合地基的承载特性模型试验[J].东南大学学报(自然科学版),2020,50(5):814-821.[doi:10.3969/j.issn.1001-0505.2020.05.004]
 Du Guangyin,Cai Jun,Sun Changshen,et al.Model test of bearing characteristics on pervious concrete pile composite foundation[J].Journal of Southeast University (Natural Science Edition),2020,50(5):814-821.[doi:10.3969/j.issn.1001-0505.2020.05.004]
点击复制

透水混凝土桩复合地基的承载特性模型试验()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
814-821
栏目:
土木工程
出版日期:
2020-09-20

文章信息/Info

Title:
Model test of bearing characteristics on pervious concrete pile composite foundation
作者:
杜广印1蔡俊1孙长申2夏涵1章定文1
1东南大学岩土工程研究所, 南京 211189; 2浙江省交通规划设计研究院有限公司, 杭州 310006
Author(s):
Du Guangyin1 Cai Jun1 Sun Changshen2 Xia Han1 Zhang Dingwen1
1Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, China
2Zhejiang Provincial Institute of Communications Planning, Design and Research, Hangzhou 310006, China
关键词:
透水混凝土桩 复合地基 承载特性 模型试验
Keywords:
pervious concrete pile composite foundation bearing characteristics model test
分类号:
TU452
DOI:
10.3969/j.issn.1001-0505.2020.05.004
摘要:
为研究透水混凝土桩复合地基的承载特性, 采用模型试验获得了分级加载过程中的沉降、桩土应力比、桩身侧摩阻力和孔压消散规律. 结果表明,骨料粒径为3~5 mm、孔隙率为30%的透水混凝土模型桩可以兼顾强度和透水性. 处理饱和粉土地基时, 相比不透水混凝土桩复合地基, 透水混凝土桩复合地基使固结时间缩短30.3%,侧摩阻力平均提升0.12 kPa,并降低了荷载引起的超孔压峰值.水平方向越靠近桩体, 透水混凝土桩的排水减压作用越明显.对比不同深度的超孔压峰值, 靠近桩体时, 透水混凝土桩对上部地基的排水减压效果较好, 而远离桩体时, 透水混凝土桩对下部地基的排水减压效果较好. 透水混凝土桩可以快速提高桩周土体的承载能力.
Abstract:
To investigate the bearing characteristics of the pervious concrete pile composite foundation, the settlement, the pile-soil stress ratio, the side friction and the pore-water pressure during the multi-stage loading were obtained by model tests. The results show that both strength and permeability can be achieved for the model pervious concrete pile with the aggregate size of 3 to 5 mm and the porosity of pervious concrete of 30%. When treating the silt foundation, compared with the impervious concrete pile composite foundation, the pervious concrete pile composite foundation can shorten the consolidation time by 30.3%, and increase the side friction with an average value of 0.12 kPa. During the loading process, the pervious concrete pile can significantly reduce the peak value of the excess pore-water pressure. The closer the horizontal direction distance to the pile body, the more obvious the dissipation effect of the pervious pile. As for the peak values of excess pore water pressure at different depths, the pervious pile exhibits a better effect on the drainage decompression of the upper foundation when it is closer to the pile. However, the drainage decompression effect of the lower foundation is better when it is far from the pile. The pervious concrete pile can quickly increase the soil bearing capacity.

参考文献/References:

[1] 王洪绪, 张卫华, 刘永胜. 江苏沿海饱和粉土三轴试验的研究[J]. 港工技术, 55(2): 111-115. DOI: 10.16403/j.cnki.ggjs20180227.
Wang H X, Zhang W H, Liu Y S. Study on triaxial shear test of saturated silt in Jiangsu coastal area[J]. Port Engineering Technology, 2018, 55(2): 111-115. DOI:10.16403/j.cnki.ggjs20180227. (in Chinese)
[2] Suleiman M T, Ni L S,Raich A. Development of pervious concrete pile ground-improvement alternative and behavior under vertical loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(7): 04014035. DOI:10.1061/(ASCE)GT.1943-5606.0001135.
[3] Ni L, Suleiman M T,Raich A. Behavior and soil-structure interaction of pervious concrete ground-improvement piles under lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 04015071. DOI:10.1061/(ASCE)GT.1943-5606.0001393
[4] Zhang J, Cui X,Lan R, et al. Dynamic performance characteristics of pervious concrete pile composite foundations under earthquake loads[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 04017064. DOI:10.1061/(asce)cf.1943-5509.0001056.
[5] 崔新壮, 王聪, 周亚旭, 等. 透水性混凝土桩减压减震耦合抗震机理研究[J]. 山东大学学报(工学版), 2012, 42(4): 86-91.
  Cui X Z, Wang C, Zhou Y X, et al. Anti-earthquake mechanism of pervious concrete pile composite foundation[J].Journal of Shandong University of Technology, 2012, 42(4): 86-91.(in Chinese)
[6] Cui X, Zhang J, Chen D H, et al. Clogging of pervious concrete pile caused by soil piping: An approximate experimental study[J].Canadian Geotechnical Journal, 2018, 55(7): 999-1015. DOI:10.1139/cgj-2017-0238.
[7] 黄勇, 梅国雄, 王钰轲. 透水管桩的群桩沉桩室内模型试验研究[J]. 河北工程大学学报(自然科学版), 2016, 33(3): 18-23. DOI:10.3969/j.issn.1673-9469.2016.03. 004.
Huang Y, Mei G X, Wang Y K. Laboratory model experimental investigation of permeable pipe piles[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2016, 33(3): 18-23. DOI:10.3969/ j.issn.1673-9469.2016.03.004. (in Chinese)
[8] 张娜, 崔新壮, 张炯, 等. 路堤荷载作用下透水性混凝土桩减压降沉效应研究[J]. 山东大学学报(工学版), 2013, 43(4): 80-86. DOI: 10.6040/j.issn.1672-3961.0.2013.088
Zhang N, Cui X Z, Zhang J, et al. Settlement-controlling and pressure-reduction effect of pervious concrete pile under the action of embankment load[J].Journal of Shandong University(Engineering Science), 2013, 43(4): 80-86. DOI:10.6040/j.issn.1672-3961.0.2013.088. (in Chinese)
[9] 梅国雄,梅岭,张乾,等.自适应减压排水管桩及其制备工艺:CN102261066A[P].2011-11-30.
[10] 梅国雄,梅岭,张乾,等.塞孔式减压排水管桩及其制备工艺:CN102277869A[P].2011-12-14.
[11] 雷金波.带帽PTC型有孔管桩复合地基:CN201620413U[P].2010-11-03.
[12] 刘汉龙,陈育民,丁选明,等.一种抗液化立体排水刚性桩及其施工方法:CN104818711A[P].2015-08-05.
[13] 刘加才,史文韬,王旭东,等.一种新型预制可排水管桩及其制备施工方法:CN107059854A[P].2017-08-18.
[14] 宋中南,石云兴.透水混凝土及其应用技术[M].北京:中国建筑工业出版社,2011:20-43.
[15] Cosic K, Korat L, Ducman V, et al. Influence of aggregate type and size on properties of pervious concrete[J]. Construction and Building Materials, 2015, 78: 69-76. DOI:10.1016/j.conbuildmat.2014.12.073.
[16] Zhong R, Wille K. Compression response of normal and high strength pervious concrete[J]. Construction and Building Materials, 2016, 109: 177-187. DOI:10.1016/j.conbuildmat.2016.01.051.
[17] Torres A,Hu J, Ramos A. The effect of the cementitious paste thickness on the performance of pervious concrete[J]. Construction and Building Materials, 2015, 95: 850-859. DOI:10.1016/j.conbuildmat.2015.07.187.
[18] Deo O, Neithalath N. Compressive response of pervious concretes proportioned for desired porosities[J]. Construction and Building Materials, 2011, 25(11): 4181-4189. DOI:10.1016/j.conbuildmat.2011.04.055.
[19] 张朝辉,王沁芳,杨娟.透水混凝土强度和透水性影响因素研究[J].混凝土,2008(3):7-9.DOI:10.3969/j.issn.1002-3550.2008.03.003.
Zhang Z H, Wang Q F, Yang J. Influence factors of compressive strength and permeability of pervious concrete[J]. Concrete, 2008(3): 7-9. DOI:10.3969/ j.issn.1002-3550.2008.03.003. (in Chinese)
[20] 崔新壮,欧金秋,张娜,等.透水性混凝土强度-渗透性模型试验研究[J].土木与环境工程学报,2013,35(4):114-120.DOI:10.11835/j.issn.1674-4764.2013.04.018.
Cui X Z, Ou J Q, Zhang N, et al. Strength-permeability model of pervious cement concrete[J]. Journal of Civil and Environmental Engineering, 2013, 35(4): 114-120. DOI:10.11835/j.issn.1674-4764.2013.04.018. (in Chinese)
[21] 中华人民共和国住房和城乡建设部. 透水水泥混凝土路面技术规程:CJJ/T 135—2009 [S]. 北京:中国建筑工业出版社,2009.
[22] 陶卓辉. 多孔水泥混凝土路面材料设计及性能研究[D]. 南京: 东南大学, 2006.
[23] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准:GB/T 50081—2019 [S]. 北京:中国建筑工业出版社,2019.
[24] 中华人民共和国建设部. 土的工程分类标准:GB/T 50145—2007[S]. 北京:中国计划出版社,2007.
[25] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007—2011 [S]. 北京:中国建筑工业出版社,2011.
[26] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2001[S]. 北京:中国建筑工业出版社,2009.
[27] 山东省住房和城乡建设厅. 透水混凝土桩复合地基技术规范:DB37/T 5214—2018[S]. 北京:中国建材工业出版社,2018
[28] 中华人民共和国住房和城乡建设部. 复合地基技术规范:GB/T 50783—2012 [S]. 北京:中国计划出版社,2012.
[29] 王伟, 聂庆科, 王英辉, 等. 多桩复合地基承载特性的现场试验研究[J]. 土木工程学报, 2015, 48(S1): 196-200.
  Wang W,Nie Q K, Wang Y H, et al. Experimental study on the bearing characteristics of composite foundation[J]. China Civil Engineering Journal, 2015, 48(S1): 196-200.(in Chinese)
[30] 周同和, 王非, 赵宏, 等. 多桩型刚性承台下刚性长短桩复合地基载荷试验分析[J]. 岩土工程学报, 2015, 37(1): 105-111. DOI:10.11779/CJGE201501012.
Zhou T H, Wang F, Zhao H, et al. Bearing capacity tests on multi-type-pile composite foundation with rigid cap[J].Chinese Journal of Geotechnical Engineering, 2015, 37(1): 105-111. DOI:10.11779/CJGE201501012. (in Chinese)
[31] 余雷. 刚性桩复合地基工作性状的现场研究[J]. 高速铁路技术, 2013, 4(3): 41-46. DOI:10.3969/j.issn. 1674-8247.2013.03.010.
Yu L. In-situ study of working property of rigid pile composite foundation[J].High Speed Railway Technology, 2013, 4(3): 41-46. DOI:10.3969/j.issn.1674-8247. 2013.03.010. (in Chinese)
[32] 武崇福, 季烨, 郭维超, 等. 刚性桩复合地基桩土应力比的时效分析及计算方法[J]. 中国公路学报, 2018, 31(3): 30-37. DOI: 10.19721/j.cnki.1001-7372.2018.03. 004.
Wu C F,Ji Y, Guo W C, et al. Time effect analysis and calculation method of pile-soil stress ratio of rigid pile composite foundation[J]. China Journal of Highway and Transport, 2018, 31(3): 30-37. DOI:10.19721/j.cnki. 1001-7372.2018.03.004. (in Chinese)

相似文献/References:

[1]刘和元,刘松玉.超长水泥土搅拌桩复合地基性状研究[J].东南大学学报(自然科学版),1999,29(2):63.[doi:10.3969/j.issn.1001-0505.1999.02.013]
 Liu Heyuan,Liu Songyu.Properties of the Composite Ground with Super-Long Soil-Cement Columns[J].Journal of Southeast University (Natural Science Edition),1999,29(5):63.[doi:10.3969/j.issn.1001-0505.1999.02.013]
[2]易耀林,刘松玉.钉形搅拌桩复合地基荷载试验的三维数值模拟[J].东南大学学报(自然科学版),2008,38(5):821.[doi:10.3969/j.issn.1001-0505.2008.05.016]
 Yi Yaolin,Liu Songyu.3D numerical analysis on bearing tests of T-shaped cement-soil deep mixing column composite foundation[J].Journal of Southeast University (Natural Science Edition),2008,38(5):821.[doi:10.3969/j.issn.1001-0505.2008.05.016]
[3]郑刚,刘松玉.对水泥土桩承载力确定的几个问题的分析[J].东南大学学报(自然科学版),2001,31(5):62.[doi:10.3969/j.issn.1001-0505.2001.05.014]
 Zheng Gang,Liu Songyu.Analysis on the Determination of Bearing Capacity of Soil-Cement Mixing Pile Composite Foundation[J].Journal of Southeast University (Natural Science Edition),2001,31(5):62.[doi:10.3969/j.issn.1001-0505.2001.05.014]
[4]吕伟华,缪林昌.刚性桩复合地基桩土应力比计算方法[J].东南大学学报(自然科学版),2013,43(3):624.[doi:10.3969/j.issn.1001-0505.2013.03.032]
 Lü Weihua,Miao Linchang.Calculation method of pile-soil stress ratio of rigid pile composite foundation[J].Journal of Southeast University (Natural Science Edition),2013,43(5):624.[doi:10.3969/j.issn.1001-0505.2013.03.032]

备注/Memo

备注/Memo:
收稿日期: 2020-01-14.
作者简介: 杜广印(1964—),男,博士,副教授,博士生导师, guangyin@seu.edu.cn.
引用本文: 杜广印,蔡俊,孙长申,等.透水混凝土桩复合地基的承载特性模型试验[J].东南大学学报(自然科学版),2020,50(5):814-821. DOI:10.3969/j.issn.1001-0505.2020.05.004.
更新日期/Last Update: 2020-09-20