[1]曹耿,龚维明,竺明星,等.均质土中端承壁板桩竖向振动特性[J].东南大学学报(自然科学版),2020,50(5):844-852.[doi:10.3969/j.issn.1001-0505.2020.05.008]
 Cao Geng,Gong Weiming,Zhu Mingxing,et al.Vertical vibration characteristics of end-bearing barrette in homogeneous viscoelastic soil[J].Journal of Southeast University (Natural Science Edition),2020,50(5):844-852.[doi:10.3969/j.issn.1001-0505.2020.05.008]
点击复制

均质土中端承壁板桩竖向振动特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
844-852
栏目:
土木工程
出版日期:
2020-09-20

文章信息/Info

Title:
Vertical vibration characteristics of end-bearing barrette in homogeneous viscoelastic soil
作者:
曹耿龚维明竺明星戴国亮王博臣
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 东南大学土木工程学院, 南京 211189
Author(s):
Cao Geng Gong Weiming Zhu Mingxing Dai Guoliang Wang Bochen
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
School of Civil Engineering, Southeast University, Nanjing 211189, China
关键词:
壁板桩 黏弹性土 连续体 哈密顿原理 竖向振动特性
Keywords:
barrette viscoelastic soil continuum Hamilton’s principle vertical vibration characteristics
分类号:
TU473.12
DOI:
10.3969/j.issn.1001-0505.2020.05.008
摘要:
为研究均质土中竖向简谐荷载作用下端承矩形壁板桩的振动特性,基于改进的Vlasov地基模型提出了壁板桩动力响应半解析计算方法.首先,将壁板桩-土体视为连续体,提出了由轴向位移函数和水平衰减函数构成的位移模型.然后,利用哈密顿原理求得桩-土体系的控制方程和动侧阻力表达式.最后,通过迭代算法计算动力响应.参数分析表明:相比圆桩,截面面积相同的壁板桩能显著提高桩顶静刚度和动刚度;当壁板桩横截面长宽比增大时,桩顶静刚度和动刚度均增大,且前者增幅较小而后者增幅较大;静态荷载下壁板桩轴力不受截面长宽比影响,动态荷载下则对其比较敏感;侧阻刚度在截断频率之前不受长宽比影响,但在截断频率之后,侧阻刚度随截面长宽比的增大而减小,且不受桩长细比的影响.
Abstract:
To study the vibration characteristics of an end-bearing rectangular barrette subjected to a time-harmonic vertical force in homogeneous soil, a semi-analytic calculation method for the dynamic response of the barrette was proposed based on the modified Vlasov foundation model. First, the barrette-soil was regarded as a continuum, and the displacement model composed of the displacement function along the barrette axis and the attenuation functions along the horizontal direction was proposed. Then, the governing equations of the barrette-soil system and the expressions of the vertical shaft resistance of the barrette were established according to Hamilton’s principle. Finally, the dynamic responses were calculated by the iterative algorithm. Parametric analysis results show that barrettes have the larger barrette head stiffness for the static and dynamic loads than the circular piles with the same cross-sectional area. As the aspect ratio of the barrette cross section increases, both the static and the dynamic barrette head stiffness increase, and the increment of the static barrette head stiffness is less while that of the dynamic stiffness is larger. The axial force along the barrette axis for the static loads is independent on the aspect ratio of the cross section while the dynamic axial force is sensitive. The dynamic stiffness of the shaft resistance is not affected by the aspect ratio of the cross section below the cut-off frequency. However, beyond the cut-off frequency, it decreases with the increase of the aspect ratio and is insensitive to the variations in the slenderness ratio of the barrette.

参考文献/References:

[1] 雷国辉, 洪鑫, 施建勇. 壁板桩的研究现状回顾[J]. 土木工程学报, 2005, 38(4): 103-110. DOI: 10.3321/j.issn:1000-131X.2005.04.017.
Lei G H, Hong X, Shi J Y. State-of-the-art review on barrettes[J]. China Civil Engineering Journal, 2005, 38(4): 103-110. DOI:10.3321/j.issn:1000-131X.2005.04.017. (in Chinese)
[2] Ramaswamy S D, Pertusier E M. Construction of barrettes for high-rise foundations[J]. Journal of Construction Engineering and Management, 1986, 112(4): 455-462. DOI:10.1061/(asce)0733-9364(1986)112:4(455).
[3] Ng C W W, Lei G. Performance of long rectangular barrettes in granitic saprolites[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8): 685-696. DOI:10.1061/(ASCE)1090-0241(2003)129:8(685).
[4] 郭强, 赵天庆. 双井立交矩形试验桩施工与检测[J]. 市政技术, 1994(1):40-47.
  Guo Q, Zhao T Q. Construction and testing of rectangular test pile in double wells overpass[J]. Municipal Engineering Technology, 1994(1):40-47.(in Chinese)
[5] Ukritchon B, Keawsawasvong S. Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism[J]. KSCE Journal of Civil Engineering, 2018, 22(7): 2256-2265. DOI:10.1007/s12205-017-0062-7.
[6] 李桂花, 周生华, 周纪煜, 等. 地下连续墙垂直承载力试验研究[J]. 同济大学学报(自然科学版), 1993, 21(4): 575-580.
  Li G H, Zhou S H, Zhou J Y, et al. Vertical bearing test of the diaphragm wall[J]. Journal of Tongji University(Natural Science), 1993, 21(4): 575-580.
[7] Fellenius B H, Altaee A, Kulesza R, et al. O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(7): 566-575. DOI:10.1061/(ASCE)1090-0241(1999)125:7(566).
[8] Ng C W W, Rigby D B, Ng S W L, et al. Field studies of well-instrumented barrette in Hong Kong[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 126(1): 60-73. DOI:10.1061/(ASCE)1090-0241(2001)127:5(466).
[9] 唐孟雄. 地下连续墙竖向承载力弹性分析[J]. 广州建筑, 1997, 25(4): 2-6.
[10] 雷国辉, 洪鑫, 施建勇. 壁板桩承载特性的近似三维分析[J]. 岩土力学, 2004(4):590-596. DOI: 10.3969/j.issn.1000-7598.2004.04.018.
Lei G H, Hong X, Shi J Y. Approximate three-dimensional analysis of load-carrying behaviour of barrettes[J]. Rock and Soil Mechanics, 2004(4):590-596. DOI: 10.3969/j.issn.1000-7598.2004.04.018.(in Chinese).
[11] Basu D, Prezzi M, Salgado R, et al. Settlement analysis of piles with rectangular cross sections in multi-layered soils[J]. Computers and Geotechnics, 2008, 35(4): 563-575. DOI:10.1016/j.compgeo.2007.09.001.
[12] Seo H, Basu D, Prezzi M, et al. Load-settlement response of rectangular and circular piles in multilayered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(3): 420-430. DOI:10.1061/(ASCE)1090-0241(2009)135:3(420).
[13] Novak M, Aboul-Ella F, Nogami T. Dynamic soil reactions for plane strain case[J]. Journal of Engineering Mechanics—ASCE, 1978, 104(4): 953-959.
[14] Wang K H, Wu W B, Zhang Z Q, et al. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics, 2010, 37(4): 536-544. DOI: 10.1016/j.compgeo.2010.03.001.
[15] Ai Z Y, Li Z X, Wang L H. Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space[J]. Journal of Sound and Vibration, 2016, 385: 171-183. DOI:10.1016/j.jsv.2016.09.016.
[16] Ai Z Y, Liu C L, Wang L J, et al. Vertical vibration of a partially embedded pile group in transversely isotropic soils[J]. Computers and Geotechnics, 2016, 80: 107-114. DOI:10.1016/j.compgeo.2016.06.017.
[17] Liu H L, Zheng C J, Ding X M, et al. Vertical dynamic response of a pipe pile in saturated soil layer[J]. Computers and Geotechnics, 2014, 61: 57-66. DOI: 10.1016/j.compgeo.2014.04.006.
[18] Zheng C J, Ding X M, Li P, et al. Vertical impedance of an end-bearing pile in viscoelastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(6): 676-684. DOI:10.1002/nag.2324.
[19] Zheng C J, Kouretzis G P, Sloan S W, et al. Vertical vibration of an elastic pile embedded in poroelastic soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 177-181. DOI:10.1016/j.soildyn.2015.05.010.
[20] Zheng C J, Ding X M, Sun Y F. Vertical vibration of a pipe pile in viscoelastic soil considering the three-dimensional wave effect of soil[J]. International Journal of Geomechanics, 2016, 16(1): 04015037. DOI:10.1061/(ASCE)GM.1943-5622.0000529.
[21] Mylonakis G. Elastodynamic model for large-diameter end-bearing shafts[J]. Soils and Foundations, 2001, 41(3): 31-44. DOI:10.3208/sandf.41.3_31.
[22] Anoyatis G, Mylonakis G. Dynamic Winkler modulus for axially loaded piles[J]. Geotechnique, 2012, 62(6): 521-536. DOI:10.1680/geot.11.P.052.
[23] Jones R, Xenophontos J. The Vlasov foundation model[J]. International Journal of Mechanical Sciences, 1977, 19(6): 317-323.
[24] Vallabhan C V G, Das Y C. Parametric study of beams on elastic foundations[J]. Journal of Engineering Mechanics, 1989, 114(12): 2072-2082. DOI: 10.1061/(ASCE)0733-9399(1988)114:12(2072).
[25] Vallabhan C V G, Das Y C. A refined model for beams on elastic foundations[J]. International Journal of Solids and Structures, 1991, 27(5): 629-637. DOI: 10.1016/0020-7683(91)90217-4.
[26] Girija Vallabhan C V, Das Y C. Modified Vlasov model for beams on elastic foundations[J]. Journal of Geotechnical Engineering, 1991, 117(6): 956-966. DOI:10.1061/(ASCE)0733-9410(1991)117:6(956).
[27] Sun K M. Laterally loaded piles in elastic media[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1324-1344. DOI:10.1061/(ASCE)0733-9410(1994)120:8(1324).
[28] Basu D, Salgado R, Prezzi M. A continuum-based model for analysis of laterally loaded piles in layered soils[J]. Geotechnique, 2009, 59(2): 127-140. DOI:10.1680/geot.2007.00011.
[29] Basu D, Salgado R. Analysis of laterally loaded piles with rectangular cross sections embedded in layered soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(7): 721-744. DOI:10.1002/nag.639.
[30] Lee K, Xiao Z R. A new analytical model for settlement analysis of a single pile in multi-layered soil[J]. Soils and Foundations, 1999, 39(5): 131-143. DOI:10.3208/sandf.39.5_131.
[31] Salgado R, Seo H, Prezzi M. Variational elastic solution for axially loaded piles in multilayered soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(4): 423-440. DOI:10.1002/nag.1110.
[32] Gupta B K, Basu D. Dynamic analysis of axially loaded end-bearing pile in a homogeneous viscoelastic soil[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 31-40. DOI:10.1016/j.soildyn.2018.04.019.
[33] Shadlou M, Bhattacharya S. Dynamic stiffness of pile in a layered elastic continuum[J]. Geotechnique, 2014, 64(4): 303-319. DOI:10.1680/geot.13.P.107.
[34] Liu Q J, Zhang Y Q, Gao W H. A mechanistic insight into the shaft resistance of vertically vibrating piles[J]. Soils and Foundations, 2019, 59(1): 97-109. DOI:10.1016/j.sandf.2018.09.012.
[35] 史治宇.变分原理及有限元[M].北京:国防工业出版社,2016: 35-36.
[36] Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil[J]. Geotechnique, 1998, 48(1): 55-72. DOI:10.1680/geot.1998.48.1.55.

备注/Memo

备注/Memo:
收稿日期: 2020-04-10.
作者简介: 曹耿(1986—),男,博士生;龚维明(联系人),男,博士,教授,博士生导师,wmgong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678145, 51808112)、江苏省基础研究计划(自然科学基金)资助项目(BK20180155).
引用本文: 曹耿,龚维明,竺明星,等.均质土中端承壁板桩竖向振动特性[J].东南大学学报(自然科学版),2020,50(5):844-852. DOI:10.3969/j.issn.1001-0505.2020.05.008.
更新日期/Last Update: 2020-09-20