[1]陈颖,梁彩华,张建忠,等.基于热舒适的空调系统变水温节能[J].东南大学学报(自然科学版),2020,50(5):875-881.[doi:10.3969/j.issn.1001-0505.2020.05.012]
 Chen Ying,Liang Caihua,Zhang Jianzhong,et al.Energy saving of variable chilled water temperature in air conditioning system based on thermal comfort[J].Journal of Southeast University (Natural Science Edition),2020,50(5):875-881.[doi:10.3969/j.issn.1001-0505.2020.05.012]
点击复制

基于热舒适的空调系统变水温节能()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
875-881
栏目:
能源与动力工程
出版日期:
2020-09-20

文章信息/Info

Title:
Energy saving of variable chilled water temperature in air conditioning system based on thermal comfort
作者:
陈颖1梁彩华1张建忠2张小松1
1东南大学能源与环境学院, 南京 210096; 2南京市建筑设计研究院有限责任公司, 南京 210014
Author(s):
Chen Ying1 Liang Caihua1 Zhang Jianzhong2 Zhang Xiaosong1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Nanjing Architectural Design and Research Institute Company, Nanjing 210014, China
关键词:
部分负荷 变冷冻水供水温度 热舒适 节能
Keywords:
partial load variable chilled water temperature thermal comfort energy saving
分类号:
TU831.6
DOI:
10.3969/j.issn.1001-0505.2020.05.012
摘要:
为研究部分负荷下满足建筑所有房间热舒适要求的空调系统变冷冻水温优化运行策略及其节能潜力,以某办公建筑为研究对象,构建了空调末端仿真模型.并基于最不利房间的负荷变化研究不同负荷率下冷冻水温变化对室内舒适度的影响规律,提出了基于房间负荷率变化的空调系统最佳冷冻水温分时段优化运行策略并进行节能分析.结果表明:为保证室内环境满足热舒适要求,当房间最大负荷率低于60%时,冷冻水供水温度可提高至15 ℃,若房间负荷率长时间高于85%,冷冻水温需维持在7 ℃;在供冷季采用提出的变冷冻水温优化策略运行,相比按7 ℃定水温运行,冷水机组能耗最少可节约12.6%,因而具有较好的节能效果.
Abstract:
To study the optimal operation strategy of air-conditioning system with variable chilled water temperature that meeting the thermal comfort requirements of all rooms under the partial load and the achievable energy saving effect, an office building was taken as a research object. A simulation model of the air conditioner terminal was constructed and the load rate of the most adverse room was selected as input parameters, so as to analyze the influence law of the temperature variation of the chilled water on indoor thermal comfort. And the optimal chilled water temperature of the air-conditioning system based on the change of the room load rate was proposed and the energy conservation analysis was conducted. The results show that when the room load rate is lower than 60% at all times, the chilled water supply temperature can be increased to 15 ℃. However, when the room load rate is higher than 85% for a long time, the chilled water temperature can only be maintained at 7 ℃. In the cooling season, compared with setting the chilled water temperature at 7 ℃, the energy consumption of the unit can be reduced at least by 12.6% using the variable chilled water temperature thus it is an energy saving strategy.

参考文献/References:

[1] 清华大学建筑节能研究中心. 2020中国建筑节能年度发展研究报告[M]. 北京: 中国建筑工业出版社,2020.
[2] Lin C M, Liu H Y, Tseng K Y, et al. Heating, ventilation, and air conditioning system optimization control strategy involving fan coil unit temperature control[J]. Applied Sciences, 2019, 9(11): 2391. DOI:10.3390/app9112391.
[3] Hitchin R, Pout C, Butler D. Realisable 10-year reductions in European energy consumption for air conditioning[J]. Energy and Buildings, 2015, 86: 478-491. DOI:10.1016/j.enbuild.2014.10.047.
[4] Saidur R, Hasanuzzaman M, Mahlia T M I, et al. Chillers energy consumption, energy savings and emission analysis in an institutional buildings[J]. Energy, 2011, 36(8): 5233-5238. DOI:10.1016/j.energy.2011.06.027.
[5] 刘金平, 周登锦. 空调系统变冷水温度调节的节能分析[J]. 暖通空调, 2004, 34(5): 90-91, 96. DOI:10.3969/j.issn.1002-8501.2004.05.021.
Liu J P, Zhou D J. Energy efficiency analysis of variable chilled water temperature adjustment in air conditioning systems[J]. Heating Ventilating & Air Conditioning, 2004, 34(5): 90-91, 96. DOI:10.3969/j.issn.1002-8501.2004.05.021. (in Chinese)
[6] Thu K, Saththasivam J, Saha B B, et al. Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures[J]. Applied Thermal Engineering, 2017, 123: 226-233. DOI:10.1016/j.applthermaleng.2017.05.091.
[7] 江楚遥, 梁彩华, 范鹏杰, 等. 空调系统变冷冻水温性能实验与预测模拟[J]. 化工学报, 2014, 65(z2): 265-271. DOI:10.3969/j.issn.0438-1157.2014.z2.039.
Jiang C Y, Liang C H, Fan P J, et al. Performance experiment and prediction simulation for air conditioning system with variable chilled water temperature[J]. CIESC Journal, 2014, 65(z2): 265-271. DOI:10.3969/j.issn.0438-1157.2014.z2.039. (in Chinese)
[8] Gidwani B N. Optimization of chilled water systems [J]. Energy Engineering, 1987,84(5): 30-50.
[9] Braun J E, Klein S A, Mitchell J W, et al. Applications of optimal control to chilled water systems without storage[J]. ASHRAE Transactions, 1989, 95(1): 663-675.
[10] Kaya A. Improving efficiency in existing chillers with optimization technology [J]. ASHARE Journal,1991,33(10):30-38.
[11] Zhu J H, Yang Q M, Lu J G. Model predictive control of chilled water temperature for centrialized HVAC systems[C]//2013 IEEE Electrical Power & Energy Conference. Halifax, NS, Canada:IEEE, 2013: 1-5. DOI:10.1109/EPEC.2013.6802969.
[12] Zhu J H, Yang Q M, Xu X G, et al. A LPV model-based chilled water temperature controller for HVAC systems[J]. Building Services Engineering Research and Technology, 2015, 36(3): 368-385. DOI:10.1177/0143624414555811.
[13] Chang Y C, Lin J K, Chuang M H. Optimal chiller loading by genetic algorithm for reducing energy consumption[J]. Energy and Buildings, 2005, 37(2): 147-155. DOI:10.1016/j.enbuild.2004.06.002.
[14] Chang Y C, Chen W H. Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy[J]. Energy, 2009, 34(4): 448-456. DOI:10.1016/j.energy.2008.12.010.
[15] Chang Y C. A novel energy conservation method: Optimal chiller loading[J]. Electric Power Systems Research, 2004, 69(2/3): 221-226. DOI:10.1016/j.epsr.2003.10.012.
[16] 中华人民共和国住房和城乡建设部. 民用建筑室内热湿环境评价标准:GB/T 50785—2012 [S]. 北京: 中国建筑工业出版社, 2012.
[17] Fanger P O. Calculation of thermal comfort: Introduction of a basic comfort equation [J]. ASHRAE Transactions, 1967, 73(2):1-20.
[18] Schiavon S, Hoyt T, Piccioli A. Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55[J]. Building Simulation, 2014, 7(4): 321-334. DOI:10.1007/s12273-013-0162-3.
[19] Kong D Y, Liu H, Wu Y X, et al. Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation[J]. Building and Environment, 2019, 155: 298-307. DOI:10.1016/j.buildenv.2019.02.039.
[20] 江楚遥,梁彩华,张小松,等.风机盘管热工性能预测与实验研究 [C]//2013中国制冷学会学术年会论文集.武汉:中国制冷学会, 2013: CAR262.
  Jiang C Y, Liang C H, Zhang X S, et al. Thermal performance simulation of cooling coil and its experiment validation [C]//2013 Annual Conference of Chinese Association of Refrigeration. Wuhan: CAR, 2013:CAR262.
[21] 唐娟. 中央空调系统变水温调节可适用域的研究[D]. 广州: 华南理工大学, 2011.
  Tang J. Study on the applicability domains of variable chilled water temperature adjustment in central air-conditioning system[D]. Guangzhou: South China University of Technology, 2011.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2020-04-03.
作者简介: 陈颖(1995—),女,硕士生;梁彩华(联系人),男,博士,教授,博士生导师,caihualiang@163.com.
基金项目: 国家重点研发计划资助项目(2016YFC0700304).
引用本文: 陈颖,梁彩华,张建忠,等.基于热舒适的空调系统变水温节能[J].东南大学学报(自然科学版),2020,50(5):875-881. DOI:10.3969/j.issn.1001-0505.2020.05.012.
更新日期/Last Update: 2020-09-20