[1]陈博闻,殷勇高,张凡,等.新型低品位热驱动吸收式高效空调系统[J].东南大学学报(自然科学版),2020,50(5):882-888.[doi:10.3969/j.issn.1001-0505.2020.05.013]
 Chen Bowen,Yin Yonggao,Zhang Fan,et al.New type of energy efficient absorption air conditioning system driven by low-grade heat[J].Journal of Southeast University (Natural Science Edition),2020,50(5):882-888.[doi:10.3969/j.issn.1001-0505.2020.05.013]
点击复制

新型低品位热驱动吸收式高效空调系统()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
882-888
栏目:
能源与动力工程
出版日期:
2020-09-20

文章信息/Info

Title:
New type of energy efficient absorption air conditioning system driven by low-grade heat
作者:
陈博闻1殷勇高123张凡13程小松13
1东南大学能源与环境学院, 南京 210096; 2东南大学江苏省太阳能技术重点实验室, 南京 210096; 3东南大学低碳型建筑环境设备与系统节能教育部工程研究中心, 南京 210096
Author(s):
Chen Bowen1 Yin Yonggao123 Zhang Fan13 Cheng Xiaosong13
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, Southeast University, Nanjing 210096, China
3 Engineering Research Center for Building Energy Environment and Equipments, Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
溶液除湿 吸收式制冷 高效 低品位热
Keywords:
liquid desiccant dehumidification absorption refrigeration high efficiency low-grade heat
分类号:
TU831.6
DOI:
10.3969/j.issn.1001-0505.2020.05.013
摘要:
针对常规热驱动制冷除湿技术在热源温度低于80 ℃时能效较低,甚至不能正常工作的问题,通过溶液除湿系统和吸收式制冷系统的有机耦合,提出了一种由低品位热驱动的高效空调系统.通过对比本系统和常规系统内部的热力过程,指出了本系统能效较高的主要原因在于节省了再生空气温升造成的热损失,以及通过热湿独立处理技术提升了蒸发温度.对比结果表明,本系统性能的主要影响因素及变化规律为,热源温度越高,冷却水温度越低,蒸发温度越高,除湿器出口空气含湿量越高,系统能效越高;除湿侧和制冷侧能效不同时,显热负荷占比也对系统性能有影响.当热源温度为75 ℃、除湿器出口空气含湿量为9.5 g/kg、蒸发温度为14 ℃时,本系统性能系数可达0.87,比常规系统高出40%.
Abstract:
To solve the problem that conventional heat driven refrigeration and dehumidification technologies have relatively low energy efficiency or even not work normally when the heat source temperature is lower than 80 ℃, an energy efficient air conditioning system driven by low-grade heat was proposed through the integration of the liquid desiccant dehumidification system and the absorption refrigeration system. By comparing the internal thermodynamic process of the system with that of the conventional system, it was pointed out that the main reason for the high energy efficiency of the system was to save the heat loss caused by the temperature rise of the regeneration air, and to increase the evaporation temperature through the independent heat and humidity treatment technology. The results show that the main influencing factors and changing rules of the system performance are as follows: the higher the heat source temperature, the lower the cooling water temperature, the higher the evaporation temperature, the higher the air humidity ratio at the dehumidifier outlet, and the higher the system energy efficiency. When the energy efficiency of the dehumidification side and the refrigeration side is different, the proportion of sensible heat load also affects the system performance. The coefficient of the system performance can reach 0.87, when the heat source temperature is 75 ℃, the humidity ratio of the outlet air of dehumidifier is 9.5 g/kg, and the evaporation temperature is 14 ℃, which is 40% higher than that of the conventional systems.

参考文献/References:

[1] Firth A, Zhang B, Yang A D. Quantification of global waste heat and its environmental effects[J]. Applied Energy, 2019, 235: 1314-1334. DOI:10.1016/j.apenergy.2018.10.102.
[2] Jouhara H, Olabi A G. Editorial: Industrial waste heat recovery[J]. Energy, 2018, 160: 1-2. DOI:10.1016/j.energy.2018.07.013.
[3] Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. DOI:10.1016/j.rser.2015.12.192.
[4] Barragán Reyes R M, Gómez V M A, García-Gutiérrez A. Performance modelling of single and double absorption heat transformers[J]. Current Applied Physics, 2010, 10(2): S244-S248. DOI:10.1016/j.cap.2009.11.052.
[5] Barragan R M, Heard C, Arellano V M, et al. Experimental performance of the water-lithium chloride system in a heat transformer[J]. International Journal of Energy Research, 1995, 19(7): 593-602. DOI:10.1002/er.4440190705.
[6] de Lucas A, Donate M, Rodríguez J F. Vapor pressures, densities, and viscosities of the(water + lithium bromide + sodium formate)system and(water + lithium bromide + potassium formate)system[J]. Journal of Chemical & Engineering Data, 2003, 48(1): 18-22. DOI:10.1021/je010312x.
[7] Steiu S, Salavera D, Bruno J C, et al. A basis for the development of new ammonia-water-sodium hydroxide absorption chillers[J]. International Journal of Refrigeration, 2009, 32(4): 577-587. DOI:10.1016/j.ijrefrig.2009.02.017.
[8] Sun J, Fu L, Zhang S G. A review of working fluids of absorption cycles[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1899-1906. DOI:10.1016/j.rser.2012.01.011.
[9] Alexis G K, Rogdakis E D. Performance characteristics of two combined ejector-absorption cycles[J]. Applied Thermal Engineering, 2002, 22(1): 97-106. DOI:10.1016/s1359-4311(01)00057-6.
[10] Assilzadeh F, Kalogirou S A, Ali Y, et al. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors[J]. Renewable Energy, 2005, 30(8): 1143-1159. DOI:10.1016/j.renene.2004.09.017.
[11] Grossman G,Wilk M, Devault R C. Simulation and performance analysis of triple-effect absorption cycles[C]// Proceedings of the ASHRAE Winter Meeting. Atlanta,USA: ASHRAE, 1994: 452-462.
[12] Kang Y, Kunugi Y, Kashiwagi T. Review of advanced absorption cycles: Performance improvement and temperature lift enhancement[J]. International Journal of Refrigeration, 2000, 23(5): 388-401. DOI:10.1016/s0140-7007(99)00064-x.
[13] Miller W A, Keyhani M. The correlation of simultaneous heat and mass transfer experimental data for aqueous lithium bromide vertical falling film absorption[J]. Journal of Solar Energy Engineering, 2001, 123(1): 30-42. DOI:10.1115/1.1349550.
[14] Zhai X Q, Qu M, Li Y., et al. A review for research and new design options of solar absorption cooling systems[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4416-4423. DOI:10.1016/j.rser.2011.06.016.
[15] Zheng F, Chen G. Experimental study on lithium bromide aqueous solution adiabatic absorption process[J]. Acta Energiae Solaris Sinica, 2002, 23(2): 166-170.
[16] Kaushik S C, Kumar R. Thermodynamic study of a two-stage vapour absorption refrigeration system using NH3 refrigerant with liquid/solid absorbents[J]. Energy Conversion and Management, 1985, 25(4): 427-431. DOI:10.1016/0196-8904(85)90007-x.
[17] She X H, Yin Y G, Zhang X S. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation[J]. Energy Conversion and Management, 2014, 78: 286-296. DOI:10.1016/j.enconman.2013.10.057.
[18] Yadav Y K. Vapour-compression and liquid-desiccant hybrid solar space-conditioning system for energy conservation[J]. Renewable Energy, 1995, 6(7): 719-723. DOI:10.1016/0960-1481(95)00009-9.
[19] Li Y T, Lu L, Yang H X. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong[J]. Solar Energy, 2010, 84(12): 2085-2095. DOI:10.1016/j.solener.2010.09.006.
[20] 殷勇高, 董亚明, 张小松. 一种低位热能驱动的温湿度独立处理空调系统: CN105352079A[P]. 2016-02-24.
[21] Lazzarin R M, Castellotti F. A new heat pump desiccant dehumidifier for supermarket application[J]. Energy and Buildings, 2007, 39(1): 59-65. DOI:10.1016/j.enbuild.2006.05.001.
[22] Jradi M, Riffat S. Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit[J]. Energy, 2014, 71: 80-93. DOI:10.1016/j.energy.2014.04.077.
[23] 陈博闻, 殷勇高, 高飞翔, 等. 低品位热能驱动的吸收式制冷除湿一体化空调系统: CN107388616A[P]. 2017-11-24.
[24] Liu X H, Jiang Y, Qu K Y. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2007, 48(2): 546-554. DOI:10.1016/j.enconman.2006.06.002.
[25] Raisul Islam M, Wijeysundera N E, Ho J C. Simplified models for coupled heat and mass transfer in falling-film absorbers[J]. International Journal of Heat and Mass Transfer, 2004, 47(2): 395-406. DOI:10.1016/j.ijheatmasstransfer.2003.07.001.
[26] Li T, Yin Y G, Liang Z Q, et al. Experimental study on heat and mass transfer performance of falling film absorption over a vertical tube using LiCl solution[J]. International Journal of Refrigeration, 2018, 85: 109-119. DOI:10.1016/j.ijrefrig.2017.09.015.
[27] Liang Z Q, Yin Y G, Xu M F, et al. Experimental study on LiCl solution falling-film generation process outside a vertical tube[J]. International Journal of Refrigeration, 2017, 79: 251-260. DOI:10.1016/j.ijrefrig.2017.04.007.
[28] Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382. DOI:10.1016/j.ijthermalsci.2003.09.003.
[29] Chaudhari S K, Patil K R. Thermodynamic properties of aqueous solutions of lithium chloride[J]. Physics and Chemistry of Liquids, 2002, 40(3): 317-325. DOI:10.1080/0031910021000004883.
[30] 王培红, 贾俊颖, 程懋华. 水和水蒸汽性质的IAPWS-IF97计算模型[J]. 动力工程, 2000(6): 988-991.
  Wang P H,Jia J Y, Cheng M H. The calculating models of water and steam properties with IAPWS-IF97[J]. Power Engineering, 2000(6): 988-991.(in Chinese)

相似文献/References:

[1]蒋毅,张小松,殷勇高.溶液除湿蒸发冷却系统构建及其性能[J].东南大学学报(自然科学版),2006,36(5):780.[doi:10.3969/j.issn.1001-0505.2006.05.020]
 Jiang Yi,Zhang Xiaosong,Yin Yonggao.Construct and performance research on liquid desiccant evaporative cooling system[J].Journal of Southeast University (Natural Science Edition),2006,36(5):780.[doi:10.3969/j.issn.1001-0505.2006.05.020]
[2]殷勇高,张小松,李应林,等.蓄能型太阳能溶液除湿蒸发冷却空调系统研究[J].东南大学学报(自然科学版),2005,35(1):73.[doi:10.3969/j.issn.1001-0505.2005.01.016]
 Yin Yonggao,Zhang Xiaosong,Li Yinglin,et al.Investigation of solar powered liquor desiccant evaporation cooling air conditioning system with energy storage[J].Journal of Southeast University (Natural Science Edition),2005,35(5):73.[doi:10.3969/j.issn.1001-0505.2005.01.016]
[3]程清,张小松.一种用于除湿溶液的新型太阳能耦合再生系统[J].东南大学学报(自然科学版),2014,44(1):110.[doi:10.3969/j.issn.1001-0505.2014.01.020]
 Cheng Qing,Zhang Xiaosong.A new solar coupling regeneration system for liquid desiccant[J].Journal of Southeast University (Natural Science Edition),2014,44(5):110.[doi:10.3969/j.issn.1001-0505.2014.01.020]
[4]成洁,殷勇高,张凡.低品位热驱动混合溶液除湿降温系统性能分析[J].东南大学学报(自然科学版),2019,49(1):148.[doi:10.3969/j.issn.1001-0505.2019.01.021]
 Cheng Jie,Yin Yonggao,Zhang Fan.Performance analysis of liquid desiccant cooling system using mixed solution driven by low-grade heat source[J].Journal of Southeast University (Natural Science Edition),2019,49(5):148.[doi:10.3969/j.issn.1001-0505.2019.01.021]
[5]吕玥,殷勇高.填料表面参数对LiCl溶液降膜润湿性的影响[J].东南大学学报(自然科学版),2020,50(5):889.[doi:10.3969/j.issn.1001-0505.2020.05.014]
 Lü Yue,Yin Yonggao.Effects of filler surface conditions on falling-film plate wettability using LiCl-H2O[J].Journal of Southeast University (Natural Science Edition),2020,50(5):889.[doi:10.3969/j.issn.1001-0505.2020.05.014]

备注/Memo

备注/Memo:
收稿日期: 2020-03-16.
作者简介: 陈博闻(1995—),男,硕士生; 殷勇高(联系人),男,博士,教授,博士生导师,y.yin@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2018YFC0705306).
引用本文: 陈博闻,殷勇高,张凡,等.新型低品位热驱动吸收式高效空调系统[J].东南大学学报(自然科学版),2020,50(5):882-888. DOI:10.3969/j.issn.1001-0505.2020.05.013.
更新日期/Last Update: 2020-09-20