参考文献/References:
[1] Nachmani E, Be’Ery Y, Burshtein D. Learning to decode linear codes using deep learning[C]//2016 54th Annual Allerton Conference on Communication,Control,and Computing(Allerton). Monticello, IL, USA, 2016: 341-346. DOI:10.1109/allerton.2016.7852251.
[2] Gruber T, Cammerer S, Hoydis J, et al. On deep learning-based channel decoding[C]//2017 51st Annual Conference on Information Sciences and Systems(CISS). Baltimore, MD, USA, 2017: 1-6. DOI:10.1109/ciss.2017.7926071.
[3] Liang F, Shen C, Wu F. An iterative BP-CNN architecture for channel decoding[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 144-159. DOI:10.1109/jstsp.2018.2794062.
[4] Wang T Q, Wen C K, Jin S, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J].IEEE Wireless Communications Letters, 2019, 8(2): 416-419. DOI:10.1109/lwc.2018.2874264.
[5] Wen C K, Shih W T, Jin S. Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018, 7(5): 748-751. DOI: 10. 1109/LWC. 2018. 2818160.
[6] Soltani M, Pourahmadi V, Mirzaei A, et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019, 23(4): 652-655. DOI:10.1109/lcomm.2019.2898944.
[7] He H T, Wen C K, Jin S, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(5): 852-855. DOI:10.1109/lwc.2018.2832128.
[8] Yang Y W, Gao F F, Ma X L, et al. Deep learning-based channel estimation for doubly selective fading channels[J].IEEE Access, 2019, 7: 36579-36589. DOI:10.1109/access.2019.2901066.
[9] Huang H J, Yang J, Huang H, et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8549-8560. DOI:10.1109/tvt.2018.2851783.
[10] Baek M S, Kwak S, Jung J Y, et al. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters[J]. IEEE Transactions on Broadcasting, 2019, 65(3): 636-642. DOI:10.1109/tbc.2019.2891051.
[11] Ye H, Li G Y, Juang B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114-117. DOI:10.1109/lwc.2017.2757490.
[12] Samuel N, Diskin T, Wiesel A. Deep MIMO detection[C]// 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC). Sapporo, Japan, 2017: 1-5. DOI:10.1109/spawc.2017.8227772.
[13] Luong T V, Ko Y, Vien N A, et al. Deep learning-based detector for OFDM-IM[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1159-1162. DOI:10.1109/lwc.2019.2909893.
[14] Chen Q, Zhang S, Xu S, et al. Efficient MIMO detection with imperfect channel knowledge-A deep learning approach [C]// 2019 IEEE Wireless Communications and Networking Conference(WCNC). Marrakesh, Morocco, 2019: 1-6. DOI:10.1109/WCNC.2019.8885582.
相似文献/References:
[1]程旭,周琳,张毅锋.基于多损失的生成式对抗目标跟踪算法[J].东南大学学报(自然科学版),2018,48(3):400.[doi:10.3969/j.issn.1001-0505.2018.03.004]
Cheng Xu,Zhou Lin,Zhang Yifeng.Object tracking algorithm based on multiple loss generative adversary[J].Journal of Southeast University (Natural Science Edition),2018,48(5):400.[doi:10.3969/j.issn.1001-0505.2018.03.004]