[1]周正东,章栩苓,辛润超,等.基于MAP-EM算法的双能CT直接迭代基材料分解方法[J].东南大学学报(自然科学版),2020,50(5):935-941.[doi:10.3969/j.issn.1001-0505.2020.05.020]
 Zhou Zhengdong,Zhang Xuling,Xin Runchao,et al.Direct iterative basis material decomposition method for dual-energy CT based on MAP-EM algorithm[J].Journal of Southeast University (Natural Science Edition),2020,50(5):935-941.[doi:10.3969/j.issn.1001-0505.2020.05.020]
点击复制

基于MAP-EM算法的双能CT直接迭代基材料分解方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
935-941
栏目:
计算机科学与工程
出版日期:
2020-09-20

文章信息/Info

Title:
Direct iterative basis material decomposition method for dual-energy CT based on MAP-EM algorithm
作者:
周正东1章栩苓1辛润超12贾峻山1魏士松1毛玲1
1南京航空航天大学机械结构力学及控制国家重点实验室, 南京210016; 2南京航空航天大学核科学与工程系, 南京210016
Author(s):
Zhou Zhengdong1 Zhang Xuling1 Xin Runchao12 Jia Junshan1 Wei Shisong 1 Mao Ling1
1State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
双能CT 基材料分解 MAP-EM 直接迭代 图像重建
Keywords:
dual-energy CT(computed tomography) basis material decomposition MAP-EM(maximum a posteriori expectation-maximization) direct iterative image reconstruction
分类号:
TP391;R318
DOI:
10.3969/j.issn.1001-0505.2020.05.020
摘要:
为了提高双能CT基材料分解的精度,降低基材料图像的噪声,提出了基于MAP-EM算法的直接迭代基材料分解方法.结合MAP-EM算法,推导出基材料分解直接迭代求解公式,基于双能投影数据集直接重建基材料分解图像,并对该方法的性能进行了评价和分析.仿真结果表明,所提方法可显著降低分解误差和基材料图像噪声,提高对比噪声比.与基于FBP算法的图像域基材料分解方法相比,该方法可使基材料图像中各材料区域的噪声水平下降57.42%~63.64%,分解误差水平降低31.72%~62.14%,对比噪声比提高1.37%~223.17%.
Abstract:
To improve the accuracy of basis material decomposition and reduce the noise in the basis material images for dual-energy CT(computed tomography), a direct iterative basis material decomposition method based on the MAP-EM(maximum a posteriori expectation-maximization)algorithm was proposed. Combined with the MAP-EM algorithm, the direct iterative formulas for basis material decomposition were derived. The basis material decomposition images were directly reconstructed from the dual-energy projection data set. The performance of the method was evaluated and analyzed. The simulation results show that the proposed method can significantly reduce the error of decomposition and the noise of basis material images, and improve the contrast-to-noise ratio. Compared with the image domain basis material decomposition method based on the FBP(filtered back projection)algorithm, the proposed method can reduce the noise of each material region in the basis material images by 57.42% to 63.64%. The decomposition error levels of each material region in the basis material images can be reduced by 31.72% to 62.14%. The contrast-to-noise ratios of each material region in the basis material images can be improved by 1.37% to 223.17%.

参考文献/References:

[1] Alvarez R E, Macovski A. Energy-selective reconstructions in X-ray computerized tomography[J]. Physics in medicine and Biology, 1976, 21(5): 733-744. DOI:10.1088/0031-9155/21/5/002.
[2] Sidky E Y, Zou Y, Pan X. Impact of polychromatic X-ray sources on helical, cone-beam computed tomography and dual-energy methods[J]. Physics in Medicine and Biology, 2004, 49(11): 2293-2303. DOI:10.1088/0031-9155/49/11/012.
[3] Lambert J W, Sun Y, Gould R G, et al. An image-domain contrast material extraction method for dual-energy computed tomography[J]. Investigative Radiology, 2017, 52(4): 245-254. DOI:10.1097/RLI.0000000000000335.
[4] 雷阳,连茂森,罗守华.基于改进ASD-NC-POCS方法的显微CT双能成像研究[J].中国医疗设备,2019,34(12):54-60. DOI:10.3969/j.issn.1674-1633.2019.12.014.
Lei Y, Lian M S, Luo S H. An improved approach for ASD-NC-POCS on dual-energy micro-CT imaging[J]. China Medical Equipment, 2019, 34(12): 54-60. DOI:10.3969/j.issn.1674-1633.2019.12.014. (in Chinese)
[5] Foygel Barber R, Sidky E Y, Gilat Schmidt T, et al. An algorithm for constrained one-step inversion of spectral CT data[J]. Physics in Medicine and Biology, 2016, 61(10): 3784-3818. DOI:10.1088/0031-9155/61/10/3784.
[6] Mory C, Sixou B, Si-Mohamed S, et al. Comparison of five one-step reconstruction algorithms for spectral CT[J]. Physics in Medicine and Biology, 2018, 63(23): 235001. DOI:10.1088/1361-6560/aaeaf2.
[7] Cai C, Rodet T, Legoupil S, et al. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography[J]. Medical Physics, 2013, 40(11): 111916. DOI:10.1118/1.4820478.
[8] Zhou Z D, Xin R C, Guan S L, et al. Investigation of maximum a posteriori probability expectation-maximization for image-based weighting spectral X-ray CT image reconstruction[J]. Journal of X-Ray Science and Technology, 2018, 26(5): 853-864. DOI:10.3233/XST-180396.
[9] Maass C, Meyer E, Kachelriess M. Exact dual energy material decomposition from inconsistent rays(MDIR)[J]. Medical Physics, 2011, 38(2): 691-700. DOI:10.1118/1.3533686.
[10] Caldeira L, Scheins J J, Almeida P, et al. Maximum a Posteriori Reconstruction using PRESTO and PET/MR data acquired Simultaneously with the 3TMR-BrainPET[C]//Nuclear Science Symposium Conference Record. Knoxville, TN, USA, 2011: 2879-2884. DOI: 10.1109/NSSMIC.2010.5874322.
[11] Chen Y, Ma J H, Feng Q J, et al. Nonlocal prior Bayesian tomographic reconstruction[J]. Journal of Mathematical Imaging and Vision, 2008, 30(2): 133-146. DOI: 10.1007/s10851-007-0042-5.
[12] Green P J. Bayesian reconstructions from emission tomography data using a modified EM algorithm[J]. IEEE Transactions on Medical Imaging, 1990, 9(1): 84-93. DOI:10.1109/42.52985.
[13] Brooks R A. A quantitative theory of the Hounsfield unit and its application to dual energy scanning[J]. Journal of computer assisted tomography, 1977, 1(4): 487-493.
[14] Zhang G W, Cheng J P, Zhang L, et al.A practical reconstruction method for dual energy computed tomography[J]. Journal of X-Ray Science and Technology, 2008, 16(2): 67-88.
[15] Punnoose J, Xu J, Sisniega A, et al. Technical note: Spektr 3.0—a computational tool for X-ray spectrum modeling and analysis[J]. Medical Physics, 2016, 43(8): 4711. DOI:10.1118/1.4955438.
[16] McCollough C H, Leng S, Yu L F, et al. Dual-and multi-energy CT: Principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3): 637-653. DOI:10.1148/radiol.2015142631.

备注/Memo

备注/Memo:
收稿日期: 2020-03-31.
作者简介: 周正东(1969—),男,博士,副教授,zzd_msc@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(51575256)、江苏省重点研发计划(社会发展)重点资助项目(BE2017730)、重庆市产业类重点研发(重大主题专项项目)资助项目(cstc2017zdcy-zdzxX0007)、上海航天科技创新基金资助项目(SAST 2019-121)、江苏高校优势学科建设工程资助项目(PAPD).
引用本文: 周正东,章栩苓,辛润超,等.基于MAP-EM算法的双能CT直接迭代基材料分解方法[J].东南大学学报(自然科学版),2020,50(5):935-941. DOI:10.3969/j.issn.1001-0505.2020.05.020.
更新日期/Last Update: 2020-09-20