[1]侯阳飞,陈俊平,王彬,等.基于Lomb-Scargle谱分析的分析中心GPS精密产品特性分析及修正[J].东南大学学报(自然科学版),2020,50(5):950-958.[doi:10.3969/j.issn.1001-0505.2020.05.022]
 Hou Yangfei,Chen Junping,Wang Bin,et al.Characteristic analysis and correction of GPS precise products in analysis centers based on Lomb-Scargle periodogram[J].Journal of Southeast University (Natural Science Edition),2020,50(5):950-958.[doi:10.3969/j.issn.1001-0505.2020.05.022]
点击复制

基于Lomb-Scargle谱分析的分析中心GPS精密产品特性分析及修正()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
950-958
栏目:
测绘与导航
出版日期:
2020-09-20

文章信息/Info

Title:
Characteristic analysis and correction of GPS precise products in analysis centers based on Lomb-Scargle periodogram
作者:
侯阳飞12陈俊平23王彬2王解先1
1同济大学测绘与地理信息学院, 上海 200092; 2中国科学院上海天文台, 上海 200030; 3上海市空间导航与定位技术重点实验室, 上海 200030
Author(s):
Hou Yangfei12 Chen Junping23 Wang Bin2 Wang Jiexian1
1 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China
2Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
3 Shanghai Key Laboratory of Space Navigation and Positioning Techniques, Shanghai 200030, China
关键词:
Lomb-Scargle周期图 周期性偏差 系统性偏差 偏差修正模型
Keywords:
Lomb-Scargle periodogram periodical deviation systematic deviation deviation correction model
分类号:
P228.1
DOI:
10.3969/j.issn.1001-0505.2020.05.022
摘要:
考虑到国际GNSS服务(IGS)提供的精密产品相对于全球大地测量观测系统(GGOS)时空基准准确度1 mm的要求仍存在量级差异,采用Lomb-Scargle谱分析算法分析了GNSS各分析中心精密产品与IGS最终精密产品之间的系统性偏差、周期性偏差,并在此基础上基于最小二乘法建立了偏差修正模型用于精密参数的修正.偏差修正结果表明,修正后卫星钟差标准差平均减小15.4%,卫星轨道径向标准差平均减小33.3%,卫星轨道径向与钟差综合偏差的标准差平均减小24.0%,同时空间信号测距误差也从cm量级降低至mm量级.15个测站的定位验证结果表明,偏差修正后使用单分析中心精密产品的定位误差与使用IGS最终精密产品定位误差的一致性有所提升,3个分析中心的定位误差一致性平均提升比例为14.3%,证明了该偏差修正模型能够有效提升GNSS各分析中心精密产品与IGS最终精密产品的一致性.
Abstract:
Considering that the precise orbit and clock products provided by international GNSS service(IGS)were of order of magnitude difference from those required by the global geodetic observing system(GGOS)in accuracy of 1 mm, the Lomb-Scargle periodogram was used to analyze the systematic deviation and the periodical deviation between the precise products of GNSS analysis centers(ACs)and the IGS final precision products. On this basis, a deviation correction model was established based on the least square method for the correction of precision parameters. The deviation correction results show that the standard deviation of the precise clock decreases by 15.4%, the standard deviation of the radial orbit decreases by 33.3%, and the standard deviation of the ensemble effects of radial orbit and clock decreases by 24.0% on average. The signal-in-space user ranging error(SISURE)also significantly decreases from the level of centimeters to millimeters. The positioning verification results of the 15 stations show that the consistency between the positioning errors of the precision products using single AC and the positioning errors of final precision products of IGS is also improved after the deviation correction, and the average improvement ratio of the positioning error consistency of three ACs is 14.3%. It is proved that the deviation correction model can effectively improve the consistency between the precision products of ACs and the final products of IGS.

参考文献/References:

[1] 杨赛男, 陈俊平, 曹月玲, 等. 空间信号精度的算法设计与实验分析[J]. 天文学进展, 2015, 33(2): 250-258.
  Yang S N, Chen J P, Cao Y L, et al. Calculation and analysis of signal-in-space accuracy[J]. Progress in Astronomy, 2015, 33(2): 250-258.(in Chinese)
[2] 陈俊平, 周建华, 严宇, 等. GNSS数据处理时空参数的相关性[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1649-1657. DOI:10.13203/j.whugis20170278.
Chen J P, Zhou J H, Yan Y,et al. Correlation of spatial and temporal parameters in GNSS data analysis[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1649-1657. DOI:10.13203/j.whugis20170278. (in Chinese)
[3] 魏娜, 施闯, 李敏, 等. IGS产品的一致性分析及评价[J]. 武汉大学学报(信息科学版), 2009, 34(11): 1363-1367. DOI:10.13203/j.whugis2009.11.009.
Wei N, Shi C, Li M, et al. Analysis and assessments of IGS products consistencies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1363-1367. DOI:10.13203/j.whugis2009.11.009. (in Chinese)
[4] 杨赛男, 陈俊平, 张益泽, 等. 基于最小二乘频谱分析的GPS/GLONASS卫星钟差特性研究[J]. 大地测量与地球动力学, 2014, 34(2): 169-174. DOI:10.14075/j.jgg.2014.02.015.
Yang S N, Chen J P, Zhang Y Z, et al. Study of character of GPS/GLONASS satellite clock correction based on least square spectral analysis[J]. Journal of Geodesy and Geodynamics, 2014, 34(2): 169-174. DOI:10.14075/j.jgg.2014.02.015. (in Chinese)
[5] 黄观文, 张勤, 许国昌, 等. 基于频谱分析的IGS精密星历卫星钟差精度分析研究[J]. 武汉大学学报(信息科学版), 2008, 33(5): 496-499. DOI:10.13203/j.whugis2008.05.009.
Huang G W, Zhang Q, Xu G C, et al. IGS precise satellite clock model fitting and its precision by using spectral analysis method[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 496-499. DOI:10.13203/j.whugis2008.05.009. (in Chinese)
[6] 沈博, 刘二小, 黄成, 等. 基于Lomb-Scargle算法的中山站高频雷达目标回波的周期性特征研究[J]. 数字技术与应用, 2018(5): 137-139. DOI:10.19695/j.cnki.cn12-1369.2018.05.66.
Shen B, Liu E X, Huang C, et al. The period of polar mesosphere summer echoes observed by SuperDARN Zhongshan radar based on Lomb-Scargle algorithm[J]. Digital Technology and Application, 2018(5): 137-139. DOI:10.19695/j.cnki.cn12-1369.2018.05.66. (in Chinese)
[7] Borrello J A, Wuosmaa A, Watts M. Non-dependence of nuclear decay rates of 123I and 99mTc on Earth-Sun distance[J]. Applied Radiation and Isotopes, 2018, 132:189-194. DOI: 10.1016/j.apradiso.2017.12.006.
[8] Quinn B G. Regression, the periodogram, and the Lomb-Scargle periodogram[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Shanghai, China, 2016: 4313-4317.
[9] Wang X L, Zhang Q, Zhang S C. Water levels measured with SNR using wavelet decomposition and Lomb-Scargle periodogram[J]. GPS Solutions, 2018, 22(1): 22. DOI:10.1007/s10291-017-0684-8.
[10] Ruf T. The Lomb-Scargle periodogram in biological rhythm research: Analysis of incomplete and unequally spaced time-series[J]. Biological Rhythm Research, 1999, 30(2): 178-201. DOI:10.1076/brhm.30.2.178.1422.
[11] van Dongen H P A, Olofsen E, van Hartevelt J H, et al. A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method[J]. Biological Rhythm Research, 1999, 30(2): 149-177. DOI:10.1076/brhm.30.2.149.1424.
[12] VanderPlas J T, Ivezic’ ?. Periodograms for multiband astronomical time series[J].The Astrophysical Journal, 2015, 812(1): 18. DOI:10.1088/0004-637x/812/1/18.
[13] Blume C, Lechinger J, Santhi N, et al. Significance of circadian rhythms in severely brain-injured patients. A clue to consciousness? [J]. Neurology, 2017, 88(20): 1933-1941. DOI:10.1212/wnl.0000000000003942.
[14] Chen J P, Zhang Y Z, Zhou X H, et al. GNSS clock corrections densification at SHAO: From 5 min to 30 s[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(1): 166-175. DOI:10.1007/s11433-013-5181-7.
[15] 常家超, 尚琳, 李国通, 等. 北斗系统地固系自主定轨算法[J]. 宇航学报, 2018, 39(5): 532-540.
  Chang J C, Shang L, Li G T, et al. The autonomous orbit determination algorithm in earth-centered earth-fixed reference frame of Beidou system[J]. Journal of Astronautics, 2018, 39(5): 532-540.(in Chinese)
[16] Montenbruck O, Steigenberger P, Hauschild A. Broadcast versus precise ephemerides: A multi-GNSS perspective[J]. GPS Solutions, 2015, 19(2): 321-333. DOI:10.1007/s10291-014-0390-8.

备注/Memo

备注/Memo:
收稿日期: 2020-03-01.
作者简介: 侯阳飞(1997—),男,博士生;陈俊平(联系人),男,博士,教授,博士生导师,junping@shao.ac.cn.
基金项目: 国家自然科学基金资助项目(11673050)、国家重点研发计划资助项目(2018YFB0504300)、大地测量与地球动力学国家重点实验室开放基金资助项目(SKLGED2019-3-1-E).
引用本文: 侯阳飞,陈俊平,王彬,等.基于Lomb-Scargle谱分析的分析中心GPS精密产品特性分析及修正[J].东南大学学报(自然科学版),2020,50(5):950-958. DOI:10.3969/j.issn.1001-0505.2020.05.022.
更新日期/Last Update: 2020-09-20