参考文献/References:
[1] Scarinci R, Hegyi A, Heydecker B. Definition of a merging assistant strategy using intelligent vehicles[J].Transportation Research Part C: Emerging Technologies, 2017, 82: 161-179. DOI:10.1016/j.trc.2017.06.017.
[2] 邹祥莉. 城市快速路匝道协同控制模型与方法研究[D]. 广州: 华南理工大学,2018.
Zou X L.Research on cooperative control model and method of urban freeway ramps[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[3] Rupp A, Stolz M, Horn M. Decentralized cooperative merging using sliding mode control[J].IFAC-PapersOnLine, 2018, 51(9): 349-354. DOI:10.1016/j.ifacol.2018.07.057.
[4] Uno A, Sakaguchi T, Tsugawa S. A merging control algorithm based on inter-vehicle communication[C]// IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. Tokyo, Japan, 1999: 783-787. DOI:10.1109/itsc.1999.821160.
[5] Huang Z H, Zhuang W C, Yin G D, et al. Cooperative merging for multiple connected and automated vehicles at highway on-ramps via virtual platoon formation[C]//2019 Chinese Control Conference(CCC). Guangzhou, China, 2019: 6709-6714. DOI:10.23919/chicc.2019.8866378.
[6] Pueboobpaphan R, Liu F, van Arem B. The impacts of a communication based merging assistant on traffic flows of manual and equipped vehicles at an on-ramp using traffic flow simulation[C]//13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal, 2010: 1468-1473. DOI:10.1109/itsc.2010.5625245.
[7] Zhou Y, Cholette M E, Bhaskar A, et al. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3409-3420. DOI:10.1109/tits.2018.2874234.
[8] Ntousakis I A, Nikolos I K, Papageorgiou M. Optimal vehicle trajectory planning in the context of cooperative merging on highways[J].Transportation Research Part C: Emerging Technologies, 2016, 71: 464-488. DOI:10.1016/j.trc.2016.08.007.
[9] Cao W J, Mukai M, Kawabe T, et al. Cooperative vehicle path generation during merging using model predictive control with real-time optimization[J].Control Engineering Practice, 2015, 34: 98-105. DOI:10.1016/j.conengprac.2014.10.005.
[10] Xu H L, Zhang Y, Li L, et al. Cooperative driving at unsignalized intersections using tree search[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-9. DOI:10.1109/tits.2019.2940641.
[11] Kamal M A S, Mukai M, Murata J, et al. Ecological vehicle control on roads with up-down slopes[J].IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 783-794. DOI:10.1109/tits.2011.2112648.
[12] 庄伟超. 多模混合动力汽车最优设计方法与模式切换控制研究[D]. 南京:南京理工大学,2017.
Zhuang W C.Optimal design and mode shift control of muti-mode hybrid electric vehicles[D]. Nanjing: Nanjing University of Science and Technology, 2017.(in Chinese)
[13] 顾海燕. 车联网环境下高速公路车辆跟驰模型及仿真研究[D]. 南京: 东南大学,2017.
Gu H Y.Research on freeway car-following modeling and simulation in connected vehicle environment[D].Nanjing: Southeast University, 2017.(in Chinese)
[14] Xu L W, Zhuang W C, Yin G D, et al. Stable longitudinal control of heterogeneous vehicular platoon with disturbances and information delays[J].IEEE Access, 2018, 6: 69794-69806. DOI:10.1109/access.2018.2880572.
[15] Zeng X R, Wang J M. Globally energy-optimal speed planning for road vehicles on a given route[J].Transportation Research Part C: Emerging Technologies, 2018, 93: 148-160. DOI:10.1016/j.trc.2018.05.027.
[16] 刘豹. 现代控制理论[M]. 2版. 北京:机械工业出版社, 2004:242-247.
[17] Wiedemarm R.Simulation of road traffic in traffic flow[R].Karlsruhe: University of Karlsruhe, 1974.