[1]刘畅,庄伟超,殷国栋,等.高速匝道入口多智能网联车协同合流控制[J].东南大学学报(自然科学版),2020,50(5):965-972.[doi:10.3969/j.issn.1001-0505.2020.05.024]
 Liu Chang,Zhuang Weichao,Yin Guodong,et al.Cooperative merging control of multiple connected and automated vehicles on freeway ramp[J].Journal of Southeast University (Natural Science Edition),2020,50(5):965-972.[doi:10.3969/j.issn.1001-0505.2020.05.024]
点击复制

高速匝道入口多智能网联车协同合流控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第5期
页码:
965-972
栏目:
交通运输工程
出版日期:
2020-09-20

文章信息/Info

Title:
Cooperative merging control of multiple connected and automated vehicles on freeway ramp
作者:
刘畅庄伟超殷国栋黄泽豪刘昊吉
东南大学机械工程学院, 南京 210096
Author(s):
Liu Chang Zhuang Weichao Yin Guodong Huang Zehao Liu Haoji
School of Mechnical Engineering, Southeast University, Nanjing 210096, China
关键词:
智能网联汽车 车辆轨迹规划 最优控制 协同合流
Keywords:
connected and automated vehicles vehicle trajectory planning optimal control cooperative merging
分类号:
U461
DOI:
10.3969/j.issn.1001-0505.2020.05.024
摘要:
为提高高速匝道入口车辆合流安全性与通行效率,减少燃油消耗,提出了面向高速匝道入口的多智能网联车辆最优纵向轨迹规划方法,以实现车辆的协同合流.首先,建立车辆纵向动力学模型,考虑能量效率与乘坐舒适性构造代价函数,构建入口匝道的车辆最优车速控制问题;同时,基于先进先出的合流次序,设计各相邻车辆到达合流点的时刻与时间间隔,实现安全与高效的协同合流.利用庞特里亚金极小值原理求解车辆最优车速控制问题,推导出各车辆纵向速度的最优解析解.仿真结果表明:与无控制自然合流相比,所提出控制方法通行时长缩短41.64%,燃油消耗降低12.25%;与现有基于虚拟队列的控制方法相比,通行时长相差1.67%,燃油消耗降低4.52%.
Abstract:
To improve the safety and the efficiency of vehicle merge at freeway ramp and reduce the fuel consumption, an optimal longitudinal trajectory planning method for multiple connected and automated vehicles facing freeway ramp was proposed to realize the vehicle cooperative merge. First, the vehicle longitudinal dynamics model was established, and the cost function of energy efficiency and ride comfort was considered to construct the optimal vehicle speed control problem on the on-ramp. Based on the first-in, first-out(FIFO)merging sequence, the time and the time interval of each adjacent vehicle arriving at merging point were designed to realize safe and efficient cooperative merge. The optimal vehicle speed control problem was solved by using Pontryagin’s minimum principle, and the optimal analytical solution of each vehicle longitudinal speed was derived. The simulation results show that compared with uncontrolled natural merge, the traffic time and the fuel consumption of the proposed control method are reduced by 41.64% and 12.25%, respectively. Compared with the existing control method based on virtual queue, the traffic efficiency difference is 1.67% and the fuel consumption is reduced by 4.52%.

参考文献/References:

[1] Scarinci R, Hegyi A, Heydecker B. Definition of a merging assistant strategy using intelligent vehicles[J].Transportation Research Part C: Emerging Technologies, 2017, 82: 161-179. DOI:10.1016/j.trc.2017.06.017.
[2] 邹祥莉. 城市快速路匝道协同控制模型与方法研究[D]. 广州: 华南理工大学,2018.
  Zou X L.Research on cooperative control model and method of urban freeway ramps[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[3] Rupp A, Stolz M, Horn M. Decentralized cooperative merging using sliding mode control[J].IFAC-PapersOnLine, 2018, 51(9): 349-354. DOI:10.1016/j.ifacol.2018.07.057.
[4] Uno A, Sakaguchi T, Tsugawa S. A merging control algorithm based on inter-vehicle communication[C]// IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. Tokyo, Japan, 1999: 783-787. DOI:10.1109/itsc.1999.821160.
[5] Huang Z H, Zhuang W C, Yin G D, et al. Cooperative merging for multiple connected and automated vehicles at highway on-ramps via virtual platoon formation[C]//2019 Chinese Control Conference(CCC). Guangzhou, China, 2019: 6709-6714. DOI:10.23919/chicc.2019.8866378.
[6] Pueboobpaphan R, Liu F, van Arem B. The impacts of a communication based merging assistant on traffic flows of manual and equipped vehicles at an on-ramp using traffic flow simulation[C]//13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal, 2010: 1468-1473. DOI:10.1109/itsc.2010.5625245.
[7] Zhou Y, Cholette M E, Bhaskar A, et al. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3409-3420. DOI:10.1109/tits.2018.2874234.
[8] Ntousakis I A, Nikolos I K, Papageorgiou M. Optimal vehicle trajectory planning in the context of cooperative merging on highways[J].Transportation Research Part C: Emerging Technologies, 2016, 71: 464-488. DOI:10.1016/j.trc.2016.08.007.
[9] Cao W J, Mukai M, Kawabe T, et al. Cooperative vehicle path generation during merging using model predictive control with real-time optimization[J].Control Engineering Practice, 2015, 34: 98-105. DOI:10.1016/j.conengprac.2014.10.005.
[10] Xu H L, Zhang Y, Li L, et al. Cooperative driving at unsignalized intersections using tree search[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-9. DOI:10.1109/tits.2019.2940641.
[11] Kamal M A S, Mukai M, Murata J, et al. Ecological vehicle control on roads with up-down slopes[J].IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 783-794. DOI:10.1109/tits.2011.2112648.
[12] 庄伟超. 多模混合动力汽车最优设计方法与模式切换控制研究[D]. 南京:南京理工大学,2017.
  Zhuang W C.Optimal design and mode shift control of muti-mode hybrid electric vehicles[D]. Nanjing: Nanjing University of Science and Technology, 2017.(in Chinese)
[13] 顾海燕. 车联网环境下高速公路车辆跟驰模型及仿真研究[D]. 南京: 东南大学,2017.
  Gu H Y.Research on freeway car-following modeling and simulation in connected vehicle environment[D].Nanjing: Southeast University, 2017.(in Chinese)
[14] Xu L W, Zhuang W C, Yin G D, et al. Stable longitudinal control of heterogeneous vehicular platoon with disturbances and information delays[J].IEEE Access, 2018, 6: 69794-69806. DOI:10.1109/access.2018.2880572.
[15] Zeng X R, Wang J M. Globally energy-optimal speed planning for road vehicles on a given route[J].Transportation Research Part C: Emerging Technologies, 2018, 93: 148-160. DOI:10.1016/j.trc.2018.05.027.
[16] 刘豹. 现代控制理论[M]. 2版. 北京:机械工业出版社, 2004:242-247.
[17] Wiedemarm R.Simulation of road traffic in traffic flow[R].Karlsruhe: University of Karlsruhe, 1974.

备注/Memo

备注/Memo:
收稿日期: 2020-05-03.
作者简介: 刘畅(1996—), 男, 硕士生; 殷国栋(联系人), 男, 博士, 教授, 博士生导师, ygd@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFD0700905)、国家自然科学基金资助项目(51975118).
引用本文: 刘畅,庄伟超,殷国栋,等.高速匝道入口多智能网联车协同合流控制[J].东南大学学报(自然科学版),2020,50(5):965-972. DOI:10.3969/j.issn.1001-0505.2020.05.024.
更新日期/Last Update: 2020-09-20