[1]张田田,陈振乾.基于分子动力学的正十八烷/石墨层吸附行为分析[J].东南大学学报(自然科学版),2020,50(6):1069-1075.[doi:10.3969/j.issn.1001-0505.2020.06.011]
 Zhang Tiantian,Chen Zhenqian.Adsorption behavior analysis on n-octadecane/graphite layers based on molecular dynamics method[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1069-1075.[doi:10.3969/j.issn.1001-0505.2020.06.011]
点击复制

基于分子动力学的正十八烷/石墨层吸附行为分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1069-1075
栏目:
材料科学与工程
出版日期:
2020-11-20

文章信息/Info

Title:
Adsorption behavior analysis on n-octadecane/graphite layers based on molecular dynamics method
作者:
张田田陈振乾
东南大学能源与环境学院, 南京 210096
Author(s):
Zhang Tiantian Chen Zhenqian
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
定型相变材料 分子动力学模拟 均方位移 自扩散系数
Keywords:
form-stable phase-change materials(FS-PCMs) molecular dynamics simulation mean square displacement self-diffusion coefficient
分类号:
TB34
DOI:
10.3969/j.issn.1001-0505.2020.06.011
摘要:
为模拟石墨层/正十八烷复合相变材料中的烷烃分子在石墨层表面的吸附行为,构建了由石墨层和2层正十八烷分子组成的“三明治”复合相变材料微观模型,研究了体系中正十八烷分子的排布、自扩散系数等参量.最后,采用径向分布曲线对烷烃分子在不同温度下的结合强度进行分析.结果表明:石墨层对烷烃分子产生了明显的吸附作用;随着温度的升高,正十八烷分子的自扩散系数显著增加,当温度从253 K增加到283 K时,自扩散系数也从0.951 nm2/ns逐渐增加到1.526 nm2/ns,而在293~313 K温度范围内,自扩散系数从1.655 nm2/ns显著增加到3.356 nm2/ns;体系中烷烃分子自扩散系数快速增大的原因可能是发生了相变,且烷烃发生相变的温度是在303~313 K的过渡区间内.
Abstract:
To investigate the adsorption behavior of alkane molecules in graphite/n-octadecane composite phase change material(PCM)on the surface of graphite layer, a sandwich composite PCM microscopic model consisting of graphite layer and two layers of n-octadecane molecule was established. The arrangement and the self-diffusion coefficient of the n-octadecane molecules were studied, respectively. Finally, the radial distribution curve was used to analyze the bonding strength of alkane molecules at different temperatures. The results show that the graphite layer has an obvious adsorption effect on alkane molecules. The self-diffusion coefficient of n-octadecane molecule increases significantly with the increase of temperature. When the temperature increases from 253 K to 283 K, the self-diffusion coefficient gradually increases from 0.951 nm2/ns to 1.526 nm2/ns, while in the range of 293-313 K, the self-diffusion coefficient significantly increases from 1.655 nm2/ns to 3.356 nm2/ns. The reason for the rapid increase of the self-diffusion coefficient of alkanes in the system is that the phase transition of alkanes occurs and the temperature at which alkanes undergo the phase transition is within the transition zone between 303 K and 313 K.

参考文献/References:

[1] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: Materials and applications[J].Energy Conversion and Management, 2004, 45(9/10): 1597-1615. DOI:10.1016/j.enconman.2003.09.015.
[2] Fallahi A, Guldentops G, Tao M J, et al. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties[J].Applied Thermal Engineering, 2017, 127: 1427-1441. DOI:10.1016/j.applthermaleng.2017.08.161.
[3] Kahwaji S, Johnson M B, Kheirabadi A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J].Energy, 2018, 162: 1169-1182. DOI:10.1016/j.energy.2018.08.068.
[4] Liu C Z, Rao Z H, Zhao J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J].Nano Energy, 2015, 13: 814-826. DOI:10.1016/j.nanoen.2015.02.016.
[5] 刘正浩, 张小松, 王昌领, 等. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报, 2020, 71(7): 3362-3371. DOI:10.11949/0438-1157.20191527.
Liu Z H, Zhang X S, Wang C L, et al. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J].CIESC Journal, 2020, 71(7): 3362-3371. DOI:10.11949/0438-1157.20191527. (in Chinese)
[6] Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J].Applied Energy, 2019, 255: 113806. DOI:10.1016/j.apenergy.2019.113806.
[7] Wu S Y, Ma X Y, Peng D Q, et al. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6):2353-2361. DOI:10.1007/s10973-018-7906-3.
[8] Zhou X M. Preparation and characterization of PEG/MDI/PVA copolymer as solid-solid phase change heat storage material[J].Journal of Applied Polymer Science, 2009, 113(3): 2041-2045. DOI:10.1002/app.29923.
[9] Zhong Y J, Guo Q G, Li S Z, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J].Solar Energy Materials and Solar Cells, 2010, 94(6): 1011-1014. DOI:10.1016/j.solmat.2010.02.004.
[10] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J].Carbon, 2008, 46(1): 159-168. DOI:10.1016/j.carbon.2007.11.003.
[11] Li S Z, Song Y Z, Song Y, et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J].Carbon, 2007, 45(10): 2092-2097. DOI:10.1016/j.carbon.2007.05.014.
[12] Xiang J L, Drzal L T. Investigation of exfoliated graphite nanoplatelets(xGnP)in improving thermal conductivity of paraffin wax-based phase change material[J].Solar Energy Materials and Solar Cells, 2011, 95(7): 1811-1818. DOI:10.1016/j.solmat.2011.01.048.
[13] 刘臣臻, 张国庆, 王子缘, 等. 膨胀石墨/石蜡复合材料的制备及其在动力电池热管理系统中的散热特性[J]. 新能源进展, 2014, 2(3): 233-238. DOI:10.3969/j.issn.2095-560X.2014.03.011.
Liu C Z, Zhang G Q, Wang Z Y, et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J]. Advances in New and Renewable Enengy, 2014, 2(3): 233-238. DOI:10.3969/j.issn.2095-560X.2014.03.011. (in Chinese)
[14] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47. DOI:10.11868/j.issn.1001-4381.2016.000919.
Jiang G W, Huang J H. Preparation and thermal management of expanded graphite/paraffin composite for Li-ion battery[J]. Journal of Materials Engineering, 2017, 45(7): 41-47. DOI:10.11868/j.issn.1001-4381.2016.000919. (in Chinese)
[15] Cheng F, Wen R L, Huang Z H, et al. Preparation and analysis of lightweight wall material with expanded graphite(EG)/paraffin composites for solar energy storage[J].Applied Thermal Engineering, 2017, 120: 107-114. DOI:10.1016/j.applthermaleng.2017.03.129.
[16] Luo J F, Yin H W, Li W Y, et al. Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J].International Journal of Heat and Mass Transfer, 2015, 84: 237-244. DOI:10.1016/j.ijheatmasstransfer.2015.01.019.
[17] Liu X J, Lin C P, Rao Z H. Diffusion and thermal conductivity of the mixture of paraffin and polystyrene for thermal energy storage: A molecular dynamics study[J].Journal of the Energy Institute, 2017, 90(4): 534-543. DOI:10.1016/j.joei.2016.05.008.
[18] Liu X J, Rao Z H. Thermal diffusion and phase transition of n-octadecane as thermal energy storage material on nanoscale copper surface: A molecular dynamics study[J].Journal of the Energy Institute, 2019, 92(1): 161-176. DOI:10.1016/j.joei.2017.10.011.
[19] Feng H J, Gao W, Nie J J, et al. MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures[J].Journal of Molecular Modeling, 2013, 19(1): 73-82. DOI:10.1007/s00894-012-1514-0.
[20] Sun H. COMPASS:An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. DOI:10.1021/jp980939v.
[21] Gao W, Jiao Y, Dai L L. The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water-oil interfaces via molecular dynamics simulations[J].Journal of Nanoparticle Research, 2016, 18(4): 91. DOI:10.1007/s11051-016-3393-2.
[22] Hellmann R, Bich E, Vogel E, et al. Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and self-diffusion[J].The Journal of Chemical Physics, 2008, 129(6): 064302. DOI:10.1063/1.2958279.
[23] 张金平, 张洋洋, 李慧, 等. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟[J]. 物理学报, 2014, 63(8): 086401. DOI:10.7498/aps.63.086401.
Zhang J P, Zhang Y Y, Li H, et al. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system[J]. Acta Physica Sinica, 2014, 63(8): 086401. DOI:10.7498/aps.63.086401. (in Chinese)
[24] Zhang C B, Chen Y P, Yang L B, et al. Self-diffusion for Lennard-Jones fluid confined in a nanoscale space[J].International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4770-4773. DOI:10.1016/j.ijheatmasstransfer.2011.05.032.
[25] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: Materials and applications[J].Energy Conversion and Management, 2004, 45(9/10): 1597-1615. DOI:10.1016/j.enconman.2003.09.015.
[26] Kim T H, Kelton K F. Structural study of supercooled liquid transition metals[J].The Journal of Chemical Physics, 2007, 126(5): 054513. DOI:10.1063/1.2431173.
[27] Jakse N, Pasturel A. Dynamic aspects of the liquid-liquid phase transformation in silicon[J].The Journal of Chemical Physics, 2008, 129(10): 104503. DOI:10.1063/1.2970084.
[28] Abraham F F. An isothermal-isobaric computer simulation of the supercooled-liquid/glass transition region: Is the short-range order in the amorphous solid fcc?[J]. The Journal of Chemical Physics, 1980, 72: 359. DOI: 10.1063/1.438857.

相似文献/References:

[1]张鑫杰,倪中华.纳米粒子介电泳的分子动力学模拟[J].东南大学学报(自然科学版),2008,38(5):884.[doi:10.3969/j.issn.1001-0505.2008.05.027]
 Zhang Xinjie,Ni Zhonghua.Molecular dynamics simulation for dielectrophoresis of nanoparticles[J].Journal of Southeast University (Natural Science Edition),2008,38(6):884.[doi:10.3969/j.issn.1001-0505.2008.05.027]
[2]汪国栋,杨决宽,陈云飞.硅纳米线热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
 Wang Guodong,Yang Juekuan,Chen Yunfei.Molecular dynamics simulation of thermal conductivity of Si nanowires[J].Journal of Southeast University (Natural Science Edition),2006,36(6):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
[3]许兆林,张程宾,陈永平.粗糙固体表面温度阶跃的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(5):989.[doi:10.3969/j.issn.1001-0505.2014.05.020]
 Xu Zhaolin,Zhang Chengbin,Chen Yongping.Molecular dynamics simulation of temperature jump on rough solid surfaces[J].Journal of Southeast University (Natural Science Edition),2014,44(6):989.[doi:10.3969/j.issn.1001-0505.2014.05.020]
[4]李堃,袁志山,纪安平,等.受限高浓度电解质溶液的电动力学输运[J].东南大学学报(自然科学版),2016,46(5):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]
 Li Kun,Yuan Zhishan,Ji Anping,et al.Electrokinetics transport of confined electrolyte solution in high concentration[J].Journal of Southeast University (Natural Science Edition),2016,46(6):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]

备注/Memo

备注/Memo:
收稿日期: 2020-06-17.
作者简介: 张田田(1995—),女,博士生;陈振乾(联系人),男,博士,教授,博士生导师,zqchen@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51676037).
引用本文: 张田田,陈振乾.基于分子动力学的正十八烷/石墨层吸附行为分析[J].东南大学学报(自然科学版),2020,50(6):1069-1075. DOI:10.3969/j.issn.1001-0505.2020.06.011.
更新日期/Last Update: 2020-11-20