参考文献/References:
[1] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: Materials and applications[J].Energy Conversion and Management, 2004, 45(9/10): 1597-1615. DOI:10.1016/j.enconman.2003.09.015.
[2] Fallahi A, Guldentops G, Tao M J, et al. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties[J].Applied Thermal Engineering, 2017, 127: 1427-1441. DOI:10.1016/j.applthermaleng.2017.08.161.
[3] Kahwaji S, Johnson M B, Kheirabadi A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J].Energy, 2018, 162: 1169-1182. DOI:10.1016/j.energy.2018.08.068.
[4] Liu C Z, Rao Z H, Zhao J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J].Nano Energy, 2015, 13: 814-826. DOI:10.1016/j.nanoen.2015.02.016.
[5] 刘正浩, 张小松, 王昌领, 等. 石蜡与石蜡/膨胀石墨熔化性能的实验研究[J]. 化工学报, 2020, 71(7): 3362-3371. DOI:10.11949/0438-1157.20191527.
Liu Z H, Zhang X S, Wang C L, et al. Experimental study on melting performance of paraffin and paraffin/expanded graphite[J].CIESC Journal, 2020, 71(7): 3362-3371. DOI:10.11949/0438-1157.20191527. (in Chinese)
[6] Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J].Applied Energy, 2019, 255: 113806. DOI:10.1016/j.apenergy.2019.113806.
[7] Wu S Y, Ma X Y, Peng D Q, et al. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6):2353-2361. DOI:10.1007/s10973-018-7906-3.
[8] Zhou X M. Preparation and characterization of PEG/MDI/PVA copolymer as solid-solid phase change heat storage material[J].Journal of Applied Polymer Science, 2009, 113(3): 2041-2045. DOI:10.1002/app.29923.
[9] Zhong Y J, Guo Q G, Li S Z, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J].Solar Energy Materials and Solar Cells, 2010, 94(6): 1011-1014. DOI:10.1016/j.solmat.2010.02.004.
[10] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J].Carbon, 2008, 46(1): 159-168. DOI:10.1016/j.carbon.2007.11.003.
[11] Li S Z, Song Y Z, Song Y, et al. Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J].Carbon, 2007, 45(10): 2092-2097. DOI:10.1016/j.carbon.2007.05.014.
[12] Xiang J L, Drzal L T. Investigation of exfoliated graphite nanoplatelets(xGnP)in improving thermal conductivity of paraffin wax-based phase change material[J].Solar Energy Materials and Solar Cells, 2011, 95(7): 1811-1818. DOI:10.1016/j.solmat.2011.01.048.
[13] 刘臣臻, 张国庆, 王子缘, 等. 膨胀石墨/石蜡复合材料的制备及其在动力电池热管理系统中的散热特性[J]. 新能源进展, 2014, 2(3): 233-238. DOI:10.3969/j.issn.2095-560X.2014.03.011.
Liu C Z, Zhang G Q, Wang Z Y, et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J]. Advances in New and Renewable Enengy, 2014, 2(3): 233-238. DOI:10.3969/j.issn.2095-560X.2014.03.011. (in Chinese)
[14] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47. DOI:10.11868/j.issn.1001-4381.2016.000919.
Jiang G W, Huang J H. Preparation and thermal management of expanded graphite/paraffin composite for Li-ion battery[J]. Journal of Materials Engineering, 2017, 45(7): 41-47. DOI:10.11868/j.issn.1001-4381.2016.000919. (in Chinese)
[15] Cheng F, Wen R L, Huang Z H, et al. Preparation and analysis of lightweight wall material with expanded graphite(EG)/paraffin composites for solar energy storage[J].Applied Thermal Engineering, 2017, 120: 107-114. DOI:10.1016/j.applthermaleng.2017.03.129.
[16] Luo J F, Yin H W, Li W Y, et al. Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J].International Journal of Heat and Mass Transfer, 2015, 84: 237-244. DOI:10.1016/j.ijheatmasstransfer.2015.01.019.
[17] Liu X J, Lin C P, Rao Z H. Diffusion and thermal conductivity of the mixture of paraffin and polystyrene for thermal energy storage: A molecular dynamics study[J].Journal of the Energy Institute, 2017, 90(4): 534-543. DOI:10.1016/j.joei.2016.05.008.
[18] Liu X J, Rao Z H. Thermal diffusion and phase transition of n-octadecane as thermal energy storage material on nanoscale copper surface: A molecular dynamics study[J].Journal of the Energy Institute, 2019, 92(1): 161-176. DOI:10.1016/j.joei.2017.10.011.
[19] Feng H J, Gao W, Nie J J, et al. MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures[J].Journal of Molecular Modeling, 2013, 19(1): 73-82. DOI:10.1007/s00894-012-1514-0.
[20] Sun H. COMPASS:An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. DOI:10.1021/jp980939v.
[21] Gao W, Jiao Y, Dai L L. The effects of size, shape, and surface composition on the diffusive behaviors of nanoparticles at/across water-oil interfaces via molecular dynamics simulations[J].Journal of Nanoparticle Research, 2016, 18(4): 91. DOI:10.1007/s11051-016-3393-2.
[22] Hellmann R, Bich E, Vogel E, et al. Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and self-diffusion[J].The Journal of Chemical Physics, 2008, 129(6): 064302. DOI:10.1063/1.2958279.
[23] 张金平, 张洋洋, 李慧, 等. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟[J]. 物理学报, 2014, 63(8): 086401. DOI:10.7498/aps.63.086401.
Zhang J P, Zhang Y Y, Li H, et al. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system[J]. Acta Physica Sinica, 2014, 63(8): 086401. DOI:10.7498/aps.63.086401. (in Chinese)
[24] Zhang C B, Chen Y P, Yang L B, et al. Self-diffusion for Lennard-Jones fluid confined in a nanoscale space[J].International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4770-4773. DOI:10.1016/j.ijheatmasstransfer.2011.05.032.
[25] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: Materials and applications[J].Energy Conversion and Management, 2004, 45(9/10): 1597-1615. DOI:10.1016/j.enconman.2003.09.015.
[26] Kim T H, Kelton K F. Structural study of supercooled liquid transition metals[J].The Journal of Chemical Physics, 2007, 126(5): 054513. DOI:10.1063/1.2431173.
[27] Jakse N, Pasturel A. Dynamic aspects of the liquid-liquid phase transformation in silicon[J].The Journal of Chemical Physics, 2008, 129(10): 104503. DOI:10.1063/1.2970084.
[28] Abraham F F. An isothermal-isobaric computer simulation of the supercooled-liquid/glass transition region: Is the short-range order in the amorphous solid fcc?[J]. The Journal of Chemical Physics, 1980, 72: 359. DOI: 10.1063/1.438857.
相似文献/References:
[1]张鑫杰,倪中华.纳米粒子介电泳的分子动力学模拟[J].东南大学学报(自然科学版),2008,38(5):884.[doi:10.3969/j.issn.1001-0505.2008.05.027]
Zhang Xinjie,Ni Zhonghua.Molecular dynamics simulation for dielectrophoresis of nanoparticles[J].Journal of Southeast University (Natural Science Edition),2008,38(6):884.[doi:10.3969/j.issn.1001-0505.2008.05.027]
[2]汪国栋,杨决宽,陈云飞.硅纳米线热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
Wang Guodong,Yang Juekuan,Chen Yunfei.Molecular dynamics simulation of thermal conductivity of Si nanowires[J].Journal of Southeast University (Natural Science Edition),2006,36(6):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
[3]许兆林,张程宾,陈永平.粗糙固体表面温度阶跃的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(5):989.[doi:10.3969/j.issn.1001-0505.2014.05.020]
Xu Zhaolin,Zhang Chengbin,Chen Yongping.Molecular dynamics simulation of temperature jump on rough solid surfaces[J].Journal of Southeast University (Natural Science Edition),2014,44(6):989.[doi:10.3969/j.issn.1001-0505.2014.05.020]
[4]李堃,袁志山,纪安平,等.受限高浓度电解质溶液的电动力学输运[J].东南大学学报(自然科学版),2016,46(5):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]
Li Kun,Yuan Zhishan,Ji Anping,et al.Electrokinetics transport of confined electrolyte solution in high concentration[J].Journal of Southeast University (Natural Science Edition),2016,46(6):972.[doi:10.3969/j.issn.1001-0505.2016.05.012]