[1]万星,丁建文,黄聪,等.成层地基土中群桩挤土效应现场试验研究[J].东南大学学报(自然科学版),2020,50(6):1090-1096.[doi:10.3969/j.issn.1001-0505.2020.06.014]
 Wan Xing,Ding Jianwen,Huang Cong,et al.Field test research on compaction effects during installation of group piles in layered soils[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1090-1096.[doi:10.3969/j.issn.1001-0505.2020.06.014]
点击复制

成层地基土中群桩挤土效应现场试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1090-1096
栏目:
土木工程
出版日期:
2020-11-20

文章信息/Info

Title:
Field test research on compaction effects during installation of group piles in layered soils
作者:
万星丁建文黄聪丁诚
东南大学交通学院, 南京 211189
Author(s):
Wan Xing Ding Jianwen Huang Cong Ding Cheng
School of Transportation, Southeast University, Nanjing 211189, China
关键词:
挤土效应 成层土 超孔隙水压力 土体水平位移 结构损伤
Keywords:
compaction effects layered soils excess pore water pressure lateral soil deformation disturbance of soil structure
分类号:
TU449
DOI:
10.3969/j.issn.1001-0505.2020.06.014
摘要:
为探究沉桩挤土效应的空间分布规律,开展了预制方桩群桩锤击施工的现场试验研究.针对群桩贯入产生的超孔隙水压力与土体深层水平位移进行测试分析,并结合深厚淤泥软土层下卧粉砂粉土互层的上软下硬地层条件,研究了土层性质、沉桩速率、结构损伤等要素对成层地基土中挤土效应的影响机理.结果表明,深厚淤泥土层中超孔隙水压力随深度近似线性增大,可达有效上覆压力的1.61倍,孔压消散速率极为缓慢,休止30 d后仍残余50%以上.下卧粉砂粉土互层中超孔隙水压力峰值明显较低,随深度变化无明显线性规律,且孔压消散迅速,休止2 d后即可消散95%以上.由于上软下硬的地层分布形式,土体深层水平位移曲线表现出上大下小的特征,在软硬土层交界面处变形易发生突变.群桩锤击施工对土体结构的扰动损伤导致休止期土体的侧向回移速率明显滞后于孔压的消散速率.
Abstract:
To explore the spatial distribution law of the compaction effects during pile installation, field tests were carried out on hammering installation of group precast square piles. The excess pore water pressure(EPWP)as well as the lateral soil deformation induced by installation of precast piles were documented and analyzed. In terms of the particular soil conditions where silty-sandy layers underlie deep muddy clay, the effects of the soil properties, the pile installation speed and the disturbance of the soil structure on the compaction effects in layered soil foundation were clarified. The results show that the EPWP increases linearly with the increase of the depth in deep mucky clay with the maximum value of 1.61 times the effective vertical stress. The dissipation rate of the EPWP is very slow with more than a half of residual EPWP after 30 d rest. In contrast, the peak value of the EPWP is obviously lower in the silty-sandy layers. The linear law cannot be observed in deep muddy clay. The EPWP dissipates fast in the silty-sandy layers with the dissipation ratio of more than 95% after 2 d rest. With vertical soil distribution featured by upper-soft and lower-hard, the curve of lateral soil deformation along the depth shows large upward and small downward. A sudden change of lateral deformation tends to occur at the interface between the soft layers and the hard layers. The rate of the lateral return deflection of soils is obviously slower than that of the EPWP dissipation because of the disturbance of the soil structure induced by pile driving.

参考文献/References:

[1] Li G, Amenuvor A C, Hou Y, et al. Effect of open-ended PHC pile installation during embankment widening on the surrounding soil[J].Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(2): 05018006. DOI:10.1061/(asce)gt.1943-5606.0002016.
[2] Shen S L, Han J, Zhu H H, et al. Evaluation of a dike damaged by pile driving in soft clay[J].Journal of Performance of Constructed Facilities, 2005, 19(4): 300-307. DOI:10.1061/(ASCE)0887-3828(2005)19:4(300).
[3] 马晓冬,朱国甫,刘立胜,等.动力打桩过程中饱和黏土地基的响应[J].岩石力学与工程学报,2019,39(1):205-216.DOI:10.13722/j.cnki.jrme.2019.0482.
Ma X D, Zhu G F, Liu L S, et al. Response of saturated clay ground during pile driving [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 39(1): 205-216. DOI:10.13722/j.cnki.jrme.2019.0482. (in Chinese)
[4] 王兴龙,陈磊,窦丹若.打桩挤土的现场试验研究及土体位移的计算公式[J].岩土力学,2003,24(S2):175-179.DOI:10.16285/j.rsm.2003.s2.040.
Wang X L, Chen L, Dou D R.Research on soil deformation caused by pile-driving and the formula calculating soil deformation [J].Rock and Soil Mechanics, 2003, 24(S2): 175-179.DOI:10.16285/j.rsm.2003.s2.040. (in Chinese)
[5] 高文生,刘金砺,赵晓光,等.关于预应力混凝土管桩工程应用中的几点认识[J].岩土力学,2015,36(S2):610-616. DOI:10.16285/j.rsm.2015.S2.086.
Gao W S, Liu J L, Zhao X G, et al. Some understanding of prestressed concrete pipe pile in engineering application [J]. Rock and Soil Mechanics, 2015, 36(S2): 610-616. DOI:10.16285/j.rsm.2015.S2.086. (in Chinese)
[6] Vesic A S. Expansion of cavities in infinite soil mass[J].Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290.
[7] 唐世栋,何连生,傅纵.软土地基中单桩施工引起的超孔隙水压力[J].岩土力学,2002,23(6):725-729,732. DOI:10.16285/j.rsm.2002.06.015.
Tang S D, He L S, Bo Z. Excess pore water pressure caused by an installing pile in soft foundation [J]. Rock and Soil Mechanics, 2002, 23(6): 725-729, 732. DOI:10.16285/j.rsm.2002.06.015. (in Chinese)
[8] Li J P, Li L, Sun D A, et al. Analysis of undrained cylindrical cavity expansion considering three-dimensional strength of soils[J]. International Journal of Geomechanics, 2016, 16(5): 04016017. DOI:10.1061/(ASCE)GM.1943-5622.0000650.
[9] Hwang J H, Liang N, Chen C H. Ground response during pile driving[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11): 939-949.
[10] 鹿群,龚晓南,崔武文,等.饱和成层地基中静压单桩挤土效应的有限元模拟[J].岩土力学,2008,29(11),3017-3020.DOI:10.16285/j.rsm.2008.11.028.
Lu Q, Gong X N, Cui W W, et al. Squeezing effects of jacked pile in layered soil [J]. Rock and Soil Mechanics, 2008, 29(11): 3017-3020. DOI:10.16285/j.rsm.2008.11.028. (in Chinese)
[11] 李镜培,李雨浓,张述涛.成层地基中静压单桩挤土效应试验[J].同济大学学报(自然科学版),2011,39(6):824-829.
  Li J P, Li Y N, Zhang S T. Experimental analysis of compaction effect of single pile jacked in layered ground[J]. Journal of Tongji University(Natural Science), 2011, 39(6): 824-829.(in Chinese)
[12] 姚笑青,胡中雄.饱和软土中沉桩引起的孔隙水压力估算[J].岩土力学,1997,18(4),30-35.DOI:10.16285/j.rsm.1997.04.006.
Yao X Q, Hu Z X. Estimating method for excess pore-water pressure developed during pile driving [J]. Rock and Soil Mechanics, 1997, 18(4): 30-34. DOI:10.16285/j.rsm.1997.04.006. (in Chinese)
[13] Pestana J M, Hunt C E, Bray J D. Soil deformation and excess pore pressure field around a closed-ended pile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 1-12. DOI: 10.1061/(ASCE)1090-0241(2002)128:1(1).
[14] 雷华阳,李肖,陆培毅,等.管桩挤土效应的现场试验和数值模拟[J].岩土力学,2012,33(4):1006-1012. DOI:10.16285/j.rsm.2012.04.039.
Lei H Y, Li X, Lu P Y, et al. Field test and numerical simulation of squeezing effect of pipe pile [J]. Rock and Soil Mechanics, 2012, 33(4): 1006-1012. DOI:10.16285/j.rsm.2012.04.039. (in Chinese)
[15] Song M M, Zeng L L, Hong Z S. Pore fluid salinity effects on physicochemical-compressive behaviour of reconstituted marine clays[J]. Applied Clay Science, 2017, 146: 270-277. DOI:10.1016/j.clay.2017.06.015.
[16] 徐永福,傅德明.结构性软土中打桩引起的超孔隙水压力[J].岩土力学,2000,21(1),53-55. DOI: 10.16285/j.rsm.2000.01.015.
Xu Y F, Fu D M. Excess pore pressure induced in piling in saturated structural soft soils [J]. Rock and Soil Mechanics, 2000, 21(1): 53-55. DOI:10.16285/j.rsm.2000.01.015. (in Chinese)
[17] 王育兴,孙钧.打桩施工对周围土性及孔隙水压力的影响[J].岩石力学与工程学报,2004,23(1):153-158.
  Wang Y X, Sun J. Influence of pile driving on properties of soils around pile and pore water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 153-158.(in Chinese)
[18] Marchi M, Gottardi G, Soga K. Fracturing pressure in clay[J].Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013008. DOI:10.1061/(asce)gt.1943-5606.0001019.[LinkOut]
[19] Liu S Y, Shao G H, Du Y J, et al. Depositional and geotechnical properties of marine clays in Lianyungang, China[J].Engineering Geology, 2011, 121(1/2): 66-74. DOI: 10.1016/j.enggeo.2011.04.014.
[20] Madhav M R, Park Y M, Miura N. Modelling and study of smear zones around band shaped drains[J]. Soils and Foundations, 1993, 33(4): 135-147. DOI:10.3208/sandf1972.33.4_135.
[21] Sathananthan I, Indraratna B, Rujikiatkamjorn C. Evaluation of smear zone extent surrounding mandrel driven vertical drains using the cavity expansion theory[J]. International Journal of Geomechanics, 2008, 8(6): 355-365. DOI:10.1061/(ASCE)1532-3641(2008)8:6(355).
[22] 刘维正,石名磊.长江漫滩相软土结构性特征及其工程效应分析[J].岩土力学,2010,31(2):427-432.DOI:10.16285/j.rsm.2010.02.049.
Liu W Z, Shi M L. Structural characteristic and engineering effect analysis of Yangtze River backswamp soft soil[J]. Rock and Soil Mechanics, 2010, 31(2):427-432. DOI:10.16285/j.rsm.2010.02.049. (in Chinese)
[23] 罗战友,龚晓南,朱向荣.考虑施工顺序及遮栏效应的静压群桩挤土位移场研究[J].岩土工程学报,2008,30(6):824-829.
  Luo Z Y, Gong X N, Zhu X R. Soil displacements around jacked group piles based on construction sequence and compacting effects[J].Chinese Journal of Geotechnical Engineering, 2008, 30(6): 824-829.(in Chinese)
[24] 鹿群,张建新,刘寒鹏.考虑施工方向影响的静压桩挤土效应观测与分析[J].土木工程学报,2011,44(S):102-105.DOI:10.15951/j.tmgcxb.2011.s2.053.
Lu Q, Zhang J X, Liu H P. A case history and itsanalysis about squeezing effects of jacked piles considering construction direction [J]. China Civil Engineering Journal, 2011, 44(S):102-105. DOI:10.15951/j.tmgcxb.2011.s2.053. (in Chinese)
[25] 江强,陈育民,王翔鹰,等.排水刚性桩沉桩挤土效应的现场试验研究[J].土木工程学报,2018,51(4):87-93. DOI:10.15951/j.tmgcxb.2018.04.010.
Jiang Q, Chen Y M, Wang X Y, etal. Field tests on squeezing effects of the rigid-drainage pile [J]. China Civil Engineering Journal, 2018, 51(4): 87-93. DOI:10.15951/j.tmgcxb.2018.04.010. (in Chinese)
[26] Roy M, Blanchet R, Tavenas F, et al. Behaviour of a sensitive clay during pile driving[J]. Canadian Geotechnical Journal, 1981, 18(1): 67-85. DOI:10.1139/t81-007.

备注/Memo

备注/Memo:
收稿日期: 2020-05-04.
作者简介: 万星(1994—),男,博士生;丁建文(联系人),男,博士,副教授,博士生导师,jwding@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51978159)、“十二五”国家科技支撑计划资助项目(2015BAB07B06).
引用本文: 万星,丁建文,黄聪,等.成层地基土中群桩挤土效应现场试验研究[J].东南大学学报(自然科学版),2020,50(6):1090-1096. DOI:10.3969/j.issn.1001-0505.2020.06.014.
更新日期/Last Update: 2020-11-20