[1]郇宁,张金萌,姚恩建.考虑效率与公平的城轨网络客流协同控制优化模型[J].东南大学学报(自然科学版),2020,50(6):1148-1155.[doi:10.3969/j.issn.1001-0505.2020.06.023]
 Huan Ning,Zhang Jinmeng,Yao Enjian.Coordinated optimization model for passenger flow control in metro network considering both efficiency and equity[J].Journal of Southeast University (Natural Science Edition),2020,50(6):1148-1155.[doi:10.3969/j.issn.1001-0505.2020.06.023]
点击复制

考虑效率与公平的城轨网络客流协同控制优化模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
50
期数:
2020年第6期
页码:
1148-1155
栏目:
交通运输工程
出版日期:
2020-11-20

文章信息/Info

Title:
Coordinated optimization model for passenger flow control in metro network considering both efficiency and equity
作者:
郇宁1张金萌2姚恩建1
1北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室, 北京 100044; 2交通运输部规划研究院, 北京 100028
Author(s):
Huan Ning1 Zhang Jinmeng2 Yao Enjian1
1 Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
2 Transport Planning and Research Institute of Ministry of Transport, Beijing 100028, China
关键词:
城市轨道交通 客流控制 网络协同 多目标优化 运营管理
Keywords:
urban rail transit passenger flow control collaborative network multi-objective optimization operation management
分类号:
U239.5
DOI:
10.3969/j.issn.1001-0505.2020.06.023
摘要:
为了解决城市轨道交通高峰期供需不匹配与延误不均衡问题, 从效率与公平层面优化网络客流协同控制方案. 在考虑乘客到达分布及满载率上限的基础上, 提出了涵盖候车、乘车、换乘等出行环节的流量守恒约束, 以全网列车平均运能利用率最大化和站台乘客滞留比差异最小化为目标函数, 构建了网络客流协同控制多目标优化模型. 以适宜上车人数为决策变量, 生成最优客流控制方案. 结果表明, 在广州地铁的最优控制实例中,最高断面满载率由126.6%降至98.6%,满载率的Gini系数由0.301降至0.292. 该模型通过调节客流分布,实现了对有限运能的充分利用, 缓解了瓶颈区间高负载和部分乘客超长滞留的问题, 为成网条件下的客流控制提供方法指导.
Abstract:
To solve the mismatch between demand and supply as well as the disequilibrium of delays in a metro network, a coordinated passenger flow control scheme was optimized from the perspectives of efficiency and equity. Considering of passengers’ arrival patterns and trains’ carrying capacity, a set of flow conservation constraints reflecting travel processes, such as waiting on the platform, boarding the train, transferring, and so on, was proposed. A multi-objective optimization model for developing the network-coordinated passenger flow control scheme was formulated by maximizing the mean utilization rate of the transport capacity and minimizing the variance of the ratios of the stranded passengers on the platforms. The optimal passenger flow control scheme was generated with the decision variable of the recommended number of boarding passengers. The results show that, in the empirical case of Guangzhou Metro, the maximum section load rate drops from 126.6% to 98.6%. The Gini coefficient of the section load rates drops from 0.301 to 0.292. The proposed model makes the most of the limited transport capacity by regulating the passenger flow patterns, alleviates the issues of crowding in the bottleneck section and extro-long delays for some passengers, and provides insights into the implementation of passenger flow control in a large-scaled metro network.

参考文献/References:

[1] 黄文慧, 李海鹰, 王莹. 轨道交通高峰期单线客流拥挤传播与控制[J]. 铁道科学与工程学报, 2017, 14(1): 173-179. DOI:10.19713/j.cnki.43-1423/u.2017.01.026.
Huang W H, Li H Y, Wang Y. Passenger congestion propagation and control in peak hours for urban rail transit line[J]. Journal of Railway Science and Engineering, 2017, 14(1): 173-179. DOI:10.19713/j.cnki.43-1423/u.2017.01. 026. (in Chinese)
[2] Jiang Z B, Fan W, Liu W, et al. Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours[J].Transportation Research Part C: Emerging Technologies, 2018, 88: 1-16. DOI:10.1016/j.trc.2018.01.008.
[3] 黄倩. 城市轨道交通线路多车站协同限流方法研究[D].成都: 西南交通大学, 2017.
  Huang Q. Method of collaborative flow-limiting in multiple stations of a single line in urban rail transit[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[4] Xu X Y, Li H Y, Liu J, et al. Passenger flow control with multi-station coordination in subway networks: Algorithm development and real-world case study[J].Transportmetrica B: Transport Dynamics, 2019, 7(1): 446-472. DOI:10.1080/21680566.2018.1434020.
[5] Shi J G, Yang L X, Yang J, et al. Cooperative passenger flow control in an oversaturated metro network with operational risk thresholds[J].Transportation Research Part C: Emerging Technologies, 2019, 107: 301-336. DOI:10.1016/j.trc.2019.08.008.
[6] 谢丽平. 城市轨道交通路网多站协同客流控制研究[D]. 北京: 北京交通大学, 2018.
  Xie L P. Research on passenger flow control with multi-station coordination in subway networks[D]. Beijing: Beijing Jiaotong University, 2018.(in Chinese)
[7] 温念慈. 城市轨道交通网络协同限流理论与方法研究[D]. 成都: 西南交通大学, 2018.
  Wen N C. Network collaborated control of passenger flow in urban rail transit: Theory and method[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[8] 姚向明, 赵鹏, 乔珂, 等. 城市轨道交通网络客流协同控制模型[J]. 中南大学学报(自然科学版), 2015, 46(1): 342-350. DOI: 10.11817/j.issn.1672-7207.2015.01.046.
Yao X M, Zhao P, Qiao K, et al. Modeling on coordinated passenger inflow control for urban rail transit network[J]. Journal of Central South University(Science and Technology), 2015, 46(1):342-350. DOI:10.11817/j.issn. 1672-7207.2015.01.046. (in Chinese)
[9] 马羽, 王卓群, 温少表, 等. 基于乘客均衡候车的轨道交通协同限流建模[J]. 深圳大学学报(理工版), 2017, 34(5): 537-543. DOI: 10.3724 /SP.J.1249.2017.05537.
Ma Y, Wang Z Q, Wen S B, et al. Modeling of flow co-control among multi-stations based on passenger equilibrium waiting for urban rail transit[J]. Journal of Shenzhen University(Science and Engineering), 2017, 34(5): 537-543. DOI:10.3724 /SP.J.1249.2017.05537. (in Chinese)
[10] 姜曼. 城市轨道交通单线多站协同客流控制研究[D]. 北京: 北京交通大学, 2016.
  Jiang M.Coordination control of passenger flow in multi stations of a single line in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2016.(in Chinese)
[11] 潘寒川, 刘志钢, 邹承良, 等. 城市轨道交通网络协调限流优化研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(5): 77-83. DOI: 10.3969/j.issn.1674-0696.2018. 05.14.
Pan H C, Liu Z G, Zou C L, et al. Optimization of cooperative passenger flow control in urban rail transit network[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(5): 77-83. DOI:10.3969/j.issn. 1674-0696.2018.05.14. (in Chinese)
[12] Huan N, Yao E J, Li B B. Early warning mechanism for the surge of passengers in metro systems based on automated fare collection data: Case study of Guangzhou, China[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(4): 917-929. DOI:10.1177/0361198119838847.
[13] 张永生, 姚恩建, 刘莎莎, 等. 地铁大线网条件下乘客SPSL路径选择模型[J]. 中国铁道科学, 2016, 37(5): 138-144. DOI: 10.3969/j.issn.1001-4632.2016.05.19.
Zhang Y S, Yao E J, Liu S S, et al. Passenger’s SPSL route choice model in a large scaled metro network[J]. China Railway Science, 2016, 37(5): 138-144. DOI:10.3969/j. issn.1001-4632.2016.05.19. (in Chinese)
[14] 肖雪梅, 王艳辉, 贾利民. 城市轨道交通路网客流均衡性分析方法[J].交通运输系统工程与信息, 2012, 12(6): 137-144. DOI:10.16097/j.cnki.1009-6744.2012.06.014.
Xiao X M, Wang Y H, Jia L M. Passenger distribution equilibrium of urban rail transportation network[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(6): 137-144. DOI:10.16097/j.cnki.1009-6744.2012.06.014. (in Chinese)
[15] 黄志远, 徐瑞华, 杨儒冬, 等. 城市轨道交通客流网络分布均衡性评价[J]. 交通运输系统工程与信息, 2018, 18(3): 139-145. DOI: 10.16097/j.cnki.1009-6744.2018.03. 022.
Huang Z Y, Xu R H, Yang R D, et al. Evaluation on equilibrium of passenger flow distribution on urban rail transit network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 139-145. DOI:10.16097/j.cnki.1009-6744.2018.03.022. (in Chinese)

相似文献/References:

[1]韩豫,成虎.城市轨道交通运营安全管理协同机制[J].东南大学学报(自然科学版),2012,42(1):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
 Han Yu,Cheng Hu.Coordination mechanism for operation safety management of urban mass transit[J].Journal of Southeast University (Natural Science Edition),2012,42(6):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
[2]石俊刚,周峰,朱炜,等.基于AFC数据的城轨乘客出行路径选择比例估计方法[J].东南大学学报(自然科学版),2015,45(1):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
 Shi Jungang,Zhou Feng,Zhu Wei,et al.Estimation method of passenger route choice proportion in urban rail transit based on AFC data[J].Journal of Southeast University (Natural Science Edition),2015,45(6):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
[3]李曼,王艳辉,贾利民.城市轨道交通车站客流模态与控制策略[J].东南大学学报(自然科学版),2015,45(6):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
 Li Man,Wang Yanhui,Jia Limin.Passenger flow modes and control strategies in urban rail transit station[J].Journal of Southeast University (Natural Science Edition),2015,45(6):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
[4]曹志超,袁振洲,李得伟.城市轨道交通同步协调的优化模型[J].东南大学学报(自然科学版),2016,46(1):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
 Cao Zhichao,Yuan Zhenzhou,Li Dewei.Synchronization and coordination optimization model of urban rail transit[J].Journal of Southeast University (Natural Science Edition),2016,46(6):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
[5]李曼,王艳辉,晋君,等.基于路网客流模态的城市轨道交通网络拥堵演变机理[J].东南大学学报(自然科学版),2017,47(2):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]
 Li Man,Wang Yanhui,Jin Jun,et al.Network congestion evolution law of urban rail transit based on network passenger flow mode[J].Journal of Southeast University (Natural Science Edition),2017,47(6):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]
[6]李思杰,徐瑞华,杨儒冬.基于运力协调的城市轨道交通网络列车运行计划优化[J].东南大学学报(自然科学版),2017,47(5):1048.[doi:10.3969/j.issn.1001-0505.2017.05.033]
 Li Sijie,Xu Ruihua,Yang Rudong.Optimizing urban rail transit network operation plans based on transport capacity coordination[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1048.[doi:10.3969/j.issn.1001-0505.2017.05.033]
[7]王佳冬,袁振洲.考虑换乘客流的城轨应急接运公交调度优化模型[J].东南大学学报(自然科学版),2021,(1):161.[doi:10.3969/j.issn.1001-0505.2021.01.022]
 Wang Jiadong,Yuan Zhenzhou.Optimization model of bus bridging scheduling with passengers transferring from urban rail transit[J].Journal of Southeast University (Natural Science Edition),2021,(6):161.[doi:10.3969/j.issn.1001-0505.2021.01.022]
[8]豆飞,潘晓军,秦勇,等.基于云模型的城市轨道交通车站客流控制触发判别方法[J].东南大学学报(自然科学版),2016,46(6):1318.[doi:10.3969/j.issn.1001-0505.2016.06.035]
 Dou Fei,Pan Xiaojun,Qin Yong,et al.Identification method for passenger inflow control in urban rail transit station based on cloud model[J].Journal of Southeast University (Natural Science Edition),2016,46(6):1318.[doi:10.3969/j.issn.1001-0505.2016.06.035]

备注/Memo

备注/Memo:
收稿日期: 2020-06-08.
作者简介: 郇宁(1994—), 男, 博士生; 姚恩建(联系人), 男, 博士, 教授, 博士生导师, enjyao@bjtu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(2019JBZ107, 2019YJS102)、北京市自然科学基金资助项目(8171003).
引用本文: 郇宁,张金萌,姚恩建.考虑效率与公平的城轨网络客流协同控制优化模型[J].东南大学学报(自然科学版),2020,50(6):1148-1155. DOI:10.3969/j.issn.1001-0505.2020.06.023.
更新日期/Last Update: 2020-11-20