[1]徐善华,牟林,张宗星,等.锈损冷弯薄壁C形钢梁受弯承载力试验研究[J].东南大学学报(自然科学版),2021,51(1):9-15.[doi:10.3969/j.issn.1001-0505.2021.01.002]
 Xu Shanhua,Mu Lin,Zhang Zongxing,et al.Experimental study on flexural capacity of corroded cold-formed thin-walled C-section beams[J].Journal of Southeast University (Natural Science Edition),2021,51(1):9-15.[doi:10.3969/j.issn.1001-0505.2021.01.002]
点击复制

锈损冷弯薄壁C形钢梁受弯承载力试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第1期
页码:
9-15
栏目:
土木工程
出版日期:
2021-01-20

文章信息/Info

Title:
Experimental study on flexural capacity of corroded cold-formed thin-walled C-section beams
作者:
徐善华牟林张宗星李柔
西安建筑科技大学西部绿色建筑国家重点实验室, 西安 710055; 西安建筑科技大学土木工程学院, 西安 710055
Author(s):
Xu Shanhua Mu Lin Zhang Zongxing Li Rou
State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
关键词:
锈蚀:冷弯薄壁 C形钢梁 受弯承载力
Keywords:
corrosion cold-formed thin-walled C-section beam flexural capacity
分类号:
TU392.1
DOI:
10.3969/j.issn.1001-0505.2021.01.002
摘要:
为了研究锈蚀对冷弯薄壁C形钢梁受弯承载力的影响,以工程拆除的8根锈损冷弯薄壁C形钢檩条为研究对象,进行受弯承载力试验.通过对比不同锈蚀程度的冷弯薄壁型钢梁的破坏模式和受弯承载力,提出了锈损冷弯薄壁C形钢梁受弯承载力修正公式.结果表明,随着锈蚀程度增加,钢梁弯角和腹板部位的强度和延性逐渐降低,钢梁破坏模式由先屈服后屈曲向直接屈曲或脆性断裂转变.与锈蚀最轻梁相比,锈蚀梁屈服荷载、极限荷载和屈曲荷载的最大降幅分别为21.7%、26.0%和43.1%.现有规范计算结果与试验结果相比偏危险,修正的有效宽度法能较好地预测锈损冷弯薄壁C形钢梁受弯承载力,为既有冷弯薄壁型钢构件承载力评估提供重要参考.
Abstract:
To study the influence of corrosion on the flexural capacity of cold-formed thin-walled C-section beams, the bearing capacity tests were carried out by taking eight rusted cold-formed thin-walled C-section steel purlins removed from some project as the research objects. A modified formula for calculating the flexural capacity of corroded cold-formed thin-walled C-section beams was proposed by comparing the failure mode and flexural capacity of cold-formed thin-walled steel beams with different degrees of corrosion. The results show that with the increase of the corrosion degree, the strength and ductility of the bending angle and the web part of the steel beam gradually decrease, and the failure mode changes from first yielding and then bending to direct buckling or brittle fracture. Compared with the minimum corroded beam, the maximum decreases of the yield load, the ultimate load and the buckling load of the corroded beam are 21.7%, 26.0% and 43.1%, respectively. Compared with the test results, the calculation results of the existing codes are more dangerous. The modified effective width method can be used to predict the flexural capacity of corroded cold-formed thin-walled C-section beams, and provide important references for the bearing capacity evaluation of existing cold-formed thin-walled steel members.

参考文献/References:

[1] 张中权. 冷弯薄壁钢结构设计手册[M]. 北京: 中国建筑工业出版社, 1996:1-10.
[2] 高欣建, 俞继前. 冷弯型钢在轻钢结构中的应用[J]. 建筑技术, 1997, 28(2): 89-91.
  Gao X J, Yu J Q. Application of cold bending section steel for construction of a light steel structure[J]. Architecture Technology, 1997, 28(2): 89-91.(in Chinese)
[3] Ma J L, Chan T M, Young B. Experimental investigation of cold-formed high strength steel tubular beams[J].Engineering Structures, 2016, 126: 200-209. DOI:10.1016/j.engstruct.2016.07.027.
[4] 中华人民共和国建设部. 冷弯薄壁型钢结构技术规范: GB 50018—2002[S]. 北京: 中国标准出版社, 2003.
[5] 中华人民共和国建设部. 冷弯型钢结构技术规范(征求意见稿):GB 50018—2014[S]. 北京: 中国计划出版社, 2014.
[6] American Iron and Steel Institute. North American specification for the design of cold-formed steel structures members:CSA S136-07[S]. Washington, DC, USA: American Iron and Steel Institute, 2001.
[7] 温东辉, 沈祖炎, 李元齐. 冷弯厚壁型钢冷弯效应及残余应力研究进展[J]. 结构工程师, 2010, 26(1): 156-163. DOI:10.3969/j.issn.1005-0159.2010.01.028.
Wen D H, Shen Z Y, Li Y Q. Research advances on effect of cold-forming and residual stresses in cold-formed thick-walled steel[J]. Structural Engineers, 2010, 26(1): 156-163. DOI:10.3969/j.issn.1005-0159.2010.01.028. (in Chinese)
[8] 许福雨. 雪灾后某门式轻钢结构厂房倒塌事故分析[J]. 工程与建设, 2008, 22(4):489-490. DOI:10.3969/j.issn.1673-5781.2008.04.018.
Xu F Y. Analysis of the collapse accident of a portal-frame light-steel workshop after snow disaster[J]. Engineering And Construction, 22(4):489-490. DOI:10.3969/j.issn.1673-5781.2008.04.018. (in Chinese)
[9] 单益东. 既有轻钢结构损伤后的抗灾性能分析[D]. 南京:东南大学,2015.
  Shan Y D. Performance analysis of damaged lightweight steel structures under disaster loading[D]. Nanjing: Southeast University, 2015.(in Chinese)
[10] Zhang Z X, Xu S H, Li R. Comparative investigation of the effect of corrosion on the mechanical properties of different parts of thin-walled steel[J]. Thin-Walled Structures, 2020, 146: 106450. DOI:10.1016/j.tws.2019.106450.
[11] Xu S H, Zhang Z X, Li R, et al. Effect of cleaned corrosion surface topography on mechanical properties of cold-formed thin-walled steel[J]. Construction and Building Materials, 2019, 222: 1-14. DOI:10.1016/j.conbuildmat.2019.06.130.
[12] 徐善华, 张宗星, 苏超, 等. 中性盐雾环境锈蚀H型钢柱抗震性能试验研究[J]. 建筑结构学报, 2019, 40(1): 49-57. DOI: 10.14006/j.jzjgxb.2019.01.005.
Xu S H, Zhang Z X, Su C, et al. Experimental study on seismic behavior of corroded H-shaped steel columns under neutral salt spray environment[J]. Journal of Building Structures, 2019, 40(1): 49-57. DOI:10.14006/j.jzjgxb.2019.01.005. (in Chinese)
[13] Qin G C, Xu S H, Yao D Q. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125:205-217. DOI: 10.1016/j.jcsr.2016.06.018.
[14] Zhang Z X, Xu S H, Nie B, et al. Experimental and numerical investigation of corroded steel columns subjected to in-plane compression and bending[J]. Thin-Walled Structures, 2020,151:106735. DOI: 10.1016/j.tws.2020.106735.
[15] 吴庆, 袁迎曙. 锈蚀钢筋力学性能退化规律试验研究[J]. 土木工程学报, 2008, 41(12): 42-47. DOI: 10.3321/j.issn:1000-131X.2008.12.007.
Wu Q, Yuan Y S. Experimental study on the deterioration of mechanical properties of corroded steel bars[J].China Civil Engineering Journal, 2008, 41(12): 42-47. DOI:10.3321/j.issn:1000-131X.2008.12.007. (in Chinese)
[16] 张伟平, 王晓刚, 顾祥林. 碳纤维布加固锈蚀钢筋混凝土梁抗弯性能研究[J]. 土木工程学报, 2010, 43(6): 34-41.DOI:10.7617/j.issn.1000-8993.2013.05.031.
Zhang W P, Wang X G,Gu X L. Flexural behavior of corroded reinforced concrete beams strengthened with carbon fiber composite sheets[J]. China Civil Engineering Journal, 2010, 43(6): 34-41.DOI:10.7617/j.issn.1000-8993.2013.05.031. (in Chinese)
[17] 张世骥, 赵东拂, 幸坤涛, 等. 2 mm厚冷弯薄壁型钢腐蚀后材料力学性能研究[J]. 工业建筑, 2016, 46(4): 114-119.
  Zhang S J, Zhao D F, Xing K T, et al. Study on material mechanical performance of corroded cold-formed 2 millimetre thin-walled steel[J]. Industrial Construction, 2016, 46(4): 114-119.(in Chinese)
[18] 徐善华, 李柔, 苏超, 等. 锈损冷弯薄壁型钢材料力学性能试验[J]. 哈尔滨工业大学学报, 2018, 50(12): 74-80.DOI:10.11918/j.issn.0367-6234.201805156.
Xu S H, Li R, Su C, et al. Mechanical property tests on cold-formed thin-walled steel materials with rust loss[J]. Journal of Harbin Institute of Technology, 2018, 50(12): 74-80.DOI:10.11918/j.issn.0367-6234.201805156. (in Chinese)
[19] 中华人民共和国国家质量监督检验检疫总局.金属材料 拉伸试验 第1部分:室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.
[20] The International Organization for Standardization. Corrosion of metals and alloys—removal of corrosion products from corrosion tests specimens:ISO 8407[S]. Geneva,Switzerland: The International Organization for Standardization, 2009.

备注/Memo

备注/Memo:
收稿日期: 2020-06-11.
作者简介: 徐善华(1963—),男,博士,教授,博士生导师,xushanhua@163.com.
基金项目: 国家自然科学基金资助项目(51678477)、“十三五”国家重点研发计划资助项目(2016YFC0701305).
引用本文: 徐善华,牟林,张宗星,等.锈损冷弯薄壁C形钢梁受弯承载力试验研究[J].东南大学学报(自然科学版),2021,51(1):9-15. DOI:10.3969/j.issn.1001-0505.2021.01.002.
更新日期/Last Update: 2021-01-20