[1]江辉,谷琼,黄磊,等.考虑氯离子侵蚀时变劣化效应的近海斜拉桥地震易损性分析[J].东南大学学报(自然科学版),2021,51(1):38-45.[doi:10.3969/j.issn.1001-0505.2021.01.006]
 Jiang Hui,Gu Qiong,et al.Analysis on seismic vulnerability of offshore cable-stayed bridge considering time-dependent deterioration by chloride-induced corrosion[J].Journal of Southeast University (Natural Science Edition),2021,51(1):38-45.[doi:10.3969/j.issn.1001-0505.2021.01.006]
点击复制

考虑氯离子侵蚀时变劣化效应的近海斜拉桥地震易损性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第1期
页码:
38-45
栏目:
土木工程
出版日期:
2021-01-20

文章信息/Info

Title:
Analysis on seismic vulnerability of offshore cable-stayed bridge considering time-dependent deterioration by chloride-induced corrosion
作者:
江辉12谷琼3黄磊1李辰1孟宪锋4马馨怡1
1北京交通大学土木建筑工程学院, 北京 100044; 2中国铁道科学研究院高速铁路轨道技术国家重点实验室, 北京100081; 3中铁工程设计咨询集团有限公司, 北京 100020; 4民航机场规划设计研究总院有限公司, 北京 100029
Author(s):
Jiang Hui1 2 Gu Qiong3 Huang Lei1 Li Chen1 Meng Xianfeng4 Ma Xinyi1
1School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2State Key Laboratory for Track Technology of High-speed Railway, China Academy of Railway Sciences, Beijing 100081, China
3China Railway Engineering Consulting Group Co., Ltd., Beijing 100020, China
4China Airport Planning and Design Institute Co., Ltd., Beijing 100029, China
关键词:
近海斜拉桥 地震易损性 IDA 氯离子腐蚀 时变劣化 地震损伤概率
Keywords:
offshore cable-stayed bridge seismic vulnerability incremental dynamic analysis(IDA) chloride-induced corrosion time-dependent deterioration seismic damage probability
分类号:
TU311;P315.9
DOI:
10.3969/j.issn.1001-0505.2021.01.006
摘要:
为研究氯离子侵蚀对近海大型桥梁地震易损性的时变影响规律,以某近海斜拉桥为对象,建立非线性数值模型并开展增量动力分析,获得主塔等构件及桥梁系统的时变易损性曲线.结果表明,材料腐蚀会导致构件及结构的损伤概率出现不同程度的增加.桥梁结构第1阶自振周期对应的谱加速度Sa(T1)为0.3g时,主塔严重损伤的概率在0、25、50、75、100 a五种服役时间下分别为0、8.9%、12.1%、22.1%和35.1%.不同构件的损伤概率差异显著,服役时间为100 a,Sa(T1)=0.15g时,主塔、桥墩、桩、支座、拉索严重损伤的概率分别为0、0、21.0%、97.4%、6.4%.对于轻微损伤、中等损伤及严重损伤状态,系统易损性主要取决于支座的损伤概率;完全破坏状态则主要取决于桩的损伤概率.因此应重视沿海桥梁抗震性能的时变劣化,在桥梁设计中考虑环境侵蚀的影响.
Abstract:
To study the time-dependent effects of chloride-induced corrosion on seismic vulnerability of offshore large bridges, a non-linear numerical model for a coastal cable-stayed bridge was established, and the incremental dynamic analysis(IDA)was conducted. Time-dependent seismic vulnerability curves of the components such as the main tower and the bridge system were extracted. The results show that material corrosion increases the damage probability of components and bridge systems with varying extents. When the spectral acceleration corresponding to the first vibration period of the bridge Sa(T1)is 0.3g, the probabilities of serious damage of the main tower are 0, 8.9%, 12.1%, 22.1% and 35.1% at five service time of 0, 25, 50, 75 and 100 a, respectively. The damage probabilities of different components are significantly diverse. When the service time is 100 a and Sa(T1)=0.15g, the probabilities of serious damages for the main tower, pier, pile, bearing and cable are 0, 0, 21.0%, 97.4% and 6.4%, respectively. For slight, medium or severe damage states, the system vulnerability depends mainly on the damage probability of the bearings. However, for a complete damage state, the system vulnerability is dictated by the damage probability of the piles. Therefore, it is essential to pay attention to the time-dependent deterioration of the seismic performance of coastal bridges, and to consider the effects of environmental erosion on the bridge design.

参考文献/References:

[1] Stewart M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J].Structural Safety, 2009, 31(1): 19-30. DOI: 10.1016/j.strusafe.2007.12.001.
[2] Liang Y, Yan J L, Wang J L, et al. Analysis on the time-varying fragility of offshore concrete bridge[J]. Complexity, 2019, 2739212. DOI: 10.1155/2019/2739212.
[3] Cui F K, Zhang H N, Ghosn M, et al. Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion[J]. Engineering Structures, 2018, 155: 61-72. DOI: 10.1016/j.engstruct.2017.10.067.
[4] 成虎, 李宏男, 王东升, 等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12): 48-58. DOI: 10.6052/j.issn.1000-4750.2016.08.0584.
Cheng H, Li H N, Wang D S, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017, 34(12): 48-58. DOI:10.6052/j.issn.1000-4750.2016.08.0584. (in Chinese)
[5] 李立峰, 吴文朋, 胡思聪, 等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1): 163-170. DOI: 10.6052/j.issn.1000-4750.2014.06.0530.
Li L F, Wu W P, Hu S C, et al. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1): 163-170. DOI:10.6052/j.issn.1000-4750.2014.06.0530. (in Chinese)
[6] 胡思聪, 王连华, 李立峰, 等. 非一致氯离子侵蚀下近海桥梁时变地震易损性研究[J]. 土木工程学报, 2019, 52(4): 62-71,97. DOI: 10.15951/j.tmgcxb.2019.04.006.
Hu S C, Wang L H, Li L F, et al. Time-dependent seismic fragility assessment of offshore bridges subject to non-uniform chloride-induced corrosion[J]. China Civil Engineering Journal, 2019, 52(4): 62-71,97. DOI:10.15951/j.tmgcxb.2019.04.006. (in Chinese)
[7] DuraCrete. Statistical quantification of the variables in the limit state functions[EB/OL].(2000-01)[2019-12-01].http://www.doc88.com/p-3866166447272.html.
[8] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333. DOI: 10.1016/S0167-4730(00)00018-7.
[9] Sung Y C, Su C K. Time-dependent seismic fragility curves on optimal retrofitting of neutralised reinforced concrete bridges[J].Structure and Infrastructure Engineering, 2011, 7(10): 797-805. DOI: 10.1080/15732470902989720.
[10] Val D V, Trapper P A. Probabilistic evaluation of initiation time of chloride-induced corrosion[J].Reliability Engineering and System Safety, 2008, 93(3): 364-372. DOI: 10.1016/j.ress.2006.12.010.
[11] Du Y G, Clark L A, Chan A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147. DOI: 10.1680/macr.57.3.135.60482.
[12] Vidal T, Castel A, Francois R. Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004, 34(1): 165-174. DOI: 10.1016/S0008-8846(03)00246-1.
[13] de la Fuente D, Diaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science, 2011, 53(2): 604-617. DOI: 10.1016/j.corsci.2010.10.007.
[14] Lu W G, He Z. Vulnerability and robustness of corroded large span cable-stayed bridges under marine environment[J].Journal of Performance of Constructed Facilities, 2016, 30(1): 04014204. DOI: 10.1061/(asce)cf.1943-5509.0000727.
[15] 谷琼. 考虑环境腐蚀的近海斜拉桥概率性地震损伤特性研究[D]. 北京: 北京交通大学, 2019.
  Gu Q. Study on probabilistic seismic damage characteristics of offshore cable-stayed bridge under environmental corrosion[D]. Beijing: Beijing Jiaotong University, 2019.(in Chinese)
[16] 张金. 地震灾害下大跨度斜拉桥全寿命系统可靠性研究[D]. 成都: 西南交通大学, 2018.
  Zhang J. Study on lifetime system reliability of long-span cable stayed bridge under earthquake disaster[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[17] 王景全, 李帅, 张凡. 采用SMA智能橡胶支座的近断层大跨斜拉桥易损性分析[J]. 中国公路学报, 2017, 30(12): 30-39. DOI: 10.3969/j.issn.1001-7372.2017.12.004.
Wang J Q, Li S, Zhang F. Seismic fragility analysis of long-span cable-stayed bridge isolated by SMA wire-based smart rubber bearing in near-fault regions[J]. China Journal of Highway and Transport, 2017, 30(12): 30-39. DOI:10.3969/j.issn.1001-7372.2017.12.004. (in Chinese)
[18] 郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5): 165-171,187. DOI: 10.6052/j.issn.1000-4750.2012.01.0027.
Zheng K F, Chen L B, Zhuang W L, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5): 165-171,187. DOI:10.6052/j.issn.1000-4750.2012.01.0027. (in Chinese)
[19] 吴文朋, 李立峰. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280. DOI: 10.13465/j.cnki.jvs.2018.21.039.
Wu W P, Li L F. System seismic fragility analysis methods for bridge structures[J]. Journal of Vibration and Shock, 2018, 37(21): 273-280. DOI:10.13465/j.cnki.jvs.2018.21.039. (in Chinese)
[20] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181. DOI: 10.6052/j.issn.1000-4750.2016.09.0674.
Chen L B, Wang J J, Shangguan P. Research of seismic vulnerability model for skew highway girder bridge[J]. Engineering Mechanics, 2018, 35(1): 160-171,181. DOI:10.6052/j.issn.1000-4750.2016.09.0674. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2020-05-20.
作者简介: 江辉(1977—),男,博士,教授,博士生导师,jianghui@bjtu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378050、51727813)、高等学校学科创新引智计划资助项目(B13002)、北京市自然科学基金资助项目(8192035)、高速铁路轨道技术国家重点实验室(中国铁道科学研究院)开放课题基金资助项目(2019YJ193)、中国国家铁路集团有限公司科技研究开发计划系统性重大科研资助项目(P2019G002).
引用本文: 江辉,谷琼,黄磊,等.考虑氯离子侵蚀时变劣化效应的近海斜拉桥地震易损性分析[J].东南大学学报(自然科学版),2021,51(1):38-45. DOI:10.3969/j.issn.1001-0505.2021.01.006.
更新日期/Last Update: 2021-01-20