参考文献/References:
[1] Stewart M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J].Structural Safety, 2009, 31(1): 19-30. DOI: 10.1016/j.strusafe.2007.12.001.
[2] Liang Y, Yan J L, Wang J L, et al. Analysis on the time-varying fragility of offshore concrete bridge[J]. Complexity, 2019, 2739212. DOI: 10.1155/2019/2739212.
[3] Cui F K, Zhang H N, Ghosn M, et al. Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion[J]. Engineering Structures, 2018, 155: 61-72. DOI: 10.1016/j.engstruct.2017.10.067.
[4] 成虎, 李宏男, 王东升, 等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12): 48-58. DOI: 10.6052/j.issn.1000-4750.2016.08.0584.
Cheng H, Li H N, Wang D S, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017, 34(12): 48-58. DOI:10.6052/j.issn.1000-4750.2016.08.0584. (in Chinese)
[5] 李立峰, 吴文朋, 胡思聪, 等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学, 2016, 33(1): 163-170. DOI: 10.6052/j.issn.1000-4750.2014.06.0530.
Li L F, Wu W P, Hu S C, et al. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1): 163-170. DOI:10.6052/j.issn.1000-4750.2014.06.0530. (in Chinese)
[6] 胡思聪, 王连华, 李立峰, 等. 非一致氯离子侵蚀下近海桥梁时变地震易损性研究[J]. 土木工程学报, 2019, 52(4): 62-71,97. DOI: 10.15951/j.tmgcxb.2019.04.006.
Hu S C, Wang L H, Li L F, et al. Time-dependent seismic fragility assessment of offshore bridges subject to non-uniform chloride-induced corrosion[J]. China Civil Engineering Journal, 2019, 52(4): 62-71,97. DOI:10.15951/j.tmgcxb.2019.04.006. (in Chinese)
[7] DuraCrete. Statistical quantification of the variables in the limit state functions[EB/OL].(2000-01)[2019-12-01].http://www.doc88.com/p-3866166447272.html.
[8] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333. DOI: 10.1016/S0167-4730(00)00018-7.
[9] Sung Y C, Su C K. Time-dependent seismic fragility curves on optimal retrofitting of neutralised reinforced concrete bridges[J].Structure and Infrastructure Engineering, 2011, 7(10): 797-805. DOI: 10.1080/15732470902989720.
[10] Val D V, Trapper P A. Probabilistic evaluation of initiation time of chloride-induced corrosion[J].Reliability Engineering and System Safety, 2008, 93(3): 364-372. DOI: 10.1016/j.ress.2006.12.010.
[11] Du Y G, Clark L A, Chan A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147. DOI: 10.1680/macr.57.3.135.60482.
[12] Vidal T, Castel A, Francois R. Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004, 34(1): 165-174. DOI: 10.1016/S0008-8846(03)00246-1.
[13] de la Fuente D, Diaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corrosion Science, 2011, 53(2): 604-617. DOI: 10.1016/j.corsci.2010.10.007.
[14] Lu W G, He Z. Vulnerability and robustness of corroded large span cable-stayed bridges under marine environment[J].Journal of Performance of Constructed Facilities, 2016, 30(1): 04014204. DOI: 10.1061/(asce)cf.1943-5509.0000727.
[15] 谷琼. 考虑环境腐蚀的近海斜拉桥概率性地震损伤特性研究[D]. 北京: 北京交通大学, 2019.
Gu Q. Study on probabilistic seismic damage characteristics of offshore cable-stayed bridge under environmental corrosion[D]. Beijing: Beijing Jiaotong University, 2019.(in Chinese)
[16] 张金. 地震灾害下大跨度斜拉桥全寿命系统可靠性研究[D]. 成都: 西南交通大学, 2018.
Zhang J. Study on lifetime system reliability of long-span cable stayed bridge under earthquake disaster[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[17] 王景全, 李帅, 张凡. 采用SMA智能橡胶支座的近断层大跨斜拉桥易损性分析[J]. 中国公路学报, 2017, 30(12): 30-39. DOI: 10.3969/j.issn.1001-7372.2017.12.004.
Wang J Q, Li S, Zhang F. Seismic fragility analysis of long-span cable-stayed bridge isolated by SMA wire-based smart rubber bearing in near-fault regions[J]. China Journal of Highway and Transport, 2017, 30(12): 30-39. DOI:10.3969/j.issn.1001-7372.2017.12.004. (in Chinese)
[18] 郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5): 165-171,187. DOI: 10.6052/j.issn.1000-4750.2012.01.0027.
Zheng K F, Chen L B, Zhuang W L, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5): 165-171,187. DOI:10.6052/j.issn.1000-4750.2012.01.0027. (in Chinese)
[19] 吴文朋, 李立峰. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280. DOI: 10.13465/j.cnki.jvs.2018.21.039.
Wu W P, Li L F. System seismic fragility analysis methods for bridge structures[J]. Journal of Vibration and Shock, 2018, 37(21): 273-280. DOI:10.13465/j.cnki.jvs.2018.21.039. (in Chinese)
[20] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181. DOI: 10.6052/j.issn.1000-4750.2016.09.0674.
Chen L B, Wang J J, Shangguan P. Research of seismic vulnerability model for skew highway girder bridge[J]. Engineering Mechanics, 2018, 35(1): 160-171,181. DOI:10.6052/j.issn.1000-4750.2016.09.0674. (in Chinese)