[1]秦世强,黄春雷,张佳斌,等.基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J].东南大学学报(自然科学版),2021,51(1):61-70.[doi:10.3969/j.issn.1001-0505.2021.01.009]
 Qin Shiqiang,Huang Chunlei,Zhang Jiabin,et al.Comparison of fatigue performance between steel-UHPC composite deck and epoxy asphalt steel deck based on stress monitoring[J].Journal of Southeast University (Natural Science Edition),2021,51(1):61-70.[doi:10.3969/j.issn.1001-0505.2021.01.009]
点击复制

基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第1期
页码:
61-70
栏目:
交通运输工程
出版日期:
2021-01-20

文章信息/Info

Title:
Comparison of fatigue performance between steel-UHPC composite deck and epoxy asphalt steel deck based on stress monitoring
作者:
秦世强1黄春雷1张佳斌1高立强23
1 武汉理工大学土木工程与建筑学院, 武汉 430070; 2 中铁大桥科学研究院有限公司, 武汉 430034; 3 中铁大桥局集团有限公司桥梁结构健康与安全国家重点实验室, 武汉 430034
Author(s):
Qin Shiqiang1 Huang Chunlei1 Zhang Jiabin1 Gao Liqiang 23
1School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
1China Railway Bridge Science Research Institute Co., Ltd., Wuhan 430034, China
1State Key Laboratory for Health and Safety of Bridge Structures, China Railway Major Bridge Engineering Group Co., Ltd., Wuhan 430034, China
关键词:
桥梁工程 正交异性桥面板 钢-UHPC组合桥面 疲劳评估 应力监测
Keywords:
bridge engineering orthotropic steel deck steel-UHPC(ultra-high performance concrete)composite deck fatigue assessment stress monitoring
分类号:
U443.31
DOI:
10.3969/j.issn.1001-0505.2021.01.009
摘要:
为评估不同桥面加固方案对正交异性桥面板疲劳性能的改善情况,对比了钢-UHPC组合桥面和环氧沥青桥面铺装的桥梁疲劳性能.基于连续一周的应力时程数据,采用线性累积损伤准则计算了各疲劳易损细节的最大应力幅、等效应力幅和疲劳剩余寿命.建立有限元模型,对2种方案加固后的桥面刚度进行了定量对比,分析了车流量及温度变化对疲劳易损细节疲劳寿命的影响.结果表明:钢-UHPC组合桥面在各疲劳易损细节的最大应力幅和等效应力幅均小于ERE铺装桥面;除疲劳寿命为无穷大的疲劳易损细节外,钢-UHPC组合桥面疲劳易损细节疲劳寿命均大于ERE铺装桥面;钢-UHPC组合桥面拥有更大的抗弯刚度,钢-UHPC桥面板最大挠度为ERE铺装桥面的67.29%;车流量增多对2种方案加固后桥面疲劳易损细节疲劳寿命的影响基本一致,钢-UHPC组合桥面抗高温性能更好.
Abstract:
To evaluate the improvement of the fatigue performance of orthotropic steel deck by different reinforcement schemes, the fatigue performance of the OSD(orthotropic steel deck)reinforced by steel-UHPC(ultra-high performance concrete)and ERE(epoxy bond chips layer, resin asphalt and epoxy bond chips layer)were compared. Based on the data of stress records for a continuous week, the maximum stress amplitude, the equivalent stress amplitude, and the residual fatigue life of each fatigue-prone detail were calculated by the linear cumulative rule. A finite element model was established to quantitatively compare the stiffness of the two strengthening schemes. The influence of traffic flow and temperature change on the fatigue life of fatigue-prone details was analyzed. The results show that the maximum stress amplitude and the equivalent stress amplitude of each fatigue-prone detail of the steel-UHPC composite bridge deck are smaller than those of the ERE pavement bridge deck. The fatigue life of each fatigue-prone detail of the steel-UHPC composite bridge deck is greater than that of the ERE pavement bridge deck except for fatigue-prone details with infinite fatigue life. The steel-UHPC composite bridge deck has greater bending stiffness, and the maximum deflection of the steel-UHPC deck is 67.29% of that of the ERE pavement bridge deck. The influences of the flow rate increase on the fatigue life of each fatigue-prone detail of the bridge deck reinforced by two reinforcement schemes are basically the same, and the steel-UHPC composite deck has better high temperature resistance.

参考文献/References:

[1] 祝志文, 黄炎, 文鹏翔, 等. 随机车流下钢-UHPC组合正交异性桥面疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 200-209. DOI:10.19721/j.cnki.1001-7372.2017.03.022.
Zhu Z W, Huang Y, Wen P X, et al. Investigation on fatigue performance of orthotropic bridge deck with steel-UHPC composite system under random traffic flows [J]. China Journal of Highway and Transport, 2017, 30(3): 200-209. DOI:10.19721/j.cnki.1001-7372.2017.03.022. (in Chinese)
[2] 田启贤, 高立强, 周尚猛. 超高性能混凝土-钢正交异性板组合桥面受力性能研究[J]. 桥梁建设, 2017, 47(3): 13-18. DOI:10.3969/j.issn.1003-4722.2017.03.003.
Tian Qi X, Gao L Q, Zhou S M. Study of mechanical behavior of composite bridge deck with ultra high performance concrete and orthotropic steel plate [J]. Bridge Construction, 2017, 47(3): 13-18. DOI:10.3969/j.issn.1003-4722.2017.03.003. (in Chinese)
[3] Connor R, Fisher J, Gatti W, et al. Manual for design, construction, and maintenance of orthotropic deck bridges [M]. Washington, DC, USA: FHWA, 2012:4-6.
[4] 王春生, 冯亚成. 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24(9): 10-13, 32. DOI:10.3969/j.issn.1007-9963.2009.09.003.
Wang C S, Feng Y C. Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24(9): 10-13, 32. DOI:10.3969/j.issn.1007-9963.2009.09.003. (in Chinese)
[5] Kinomoto T, Kajhara M, Hirabayashi Y, et al. Inspection and retrofitting of fatigue damaged orthotropic steel deck[C]//Proceedings of 17th Congress of IABSE. Chicago, IL, USA,2008: 456-457.
[6] 朱劲松, 郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击, 2014, 33(14): 40-47, 71. DOI:10.13465/j.cnki.jvs.2014.14.008.
Zhu J S, Guo Y H. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock, 2014, 33(14): 40-47, 71. DOI:10.13465/j.cnki.jvs.2014.14.008. (in Chinese)
[7] 邓鸣, 张建仁, 王蕊, 等. UHPC铺装加固斜拉桥正交异性钢桥面板[J]. 长安大学学报(自然科学版), 2018, 38(1): 67-74. DOI:10.19721/j.cnki.1671-8879.2018.01.009.
Deng M, Zhang J R, Wang R, et al. Reinforcement of orthotropic steel bridge deck for cable-stayed bridge based on UHPC paving system[J]. Journal of Chang’an University(Natural Science Edition), 2018, 38(1): 67-74. DOI:10.19721/j.cnki.1671-8879.2018.01.009. (in Chinese)
[8] 曾志斌. 正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J]. 钢结构, 2011, 26(2): 9-15, 26. DOI:10.3969/j.issn.1007-9963.2011.02.00.
Zeng Z B. Classification and reasons of typical fatigue cracks in orthotropic steel deck[J]. Steel Construction, 2011, 26(2): 9-15, 26. DOI:10.3969/j.issn.1007-9963.2011.02.00. (in Chinese)
[9] 张清华, 崔闯, 卜一之, 等. 港珠澳大桥正交异性钢桥面板疲劳特性研究[J]. 土木工程学报, 2014, 47(9): 110-119. DOI:10.15951/j.tmgcxb.2014.09.039.
Zhang Q H, Cui C, Bu Y Z, et al. Study on fatigue features of orthotropic decks in steel box girder of Hong Kong-Zhuhai-Macao Bridge[J]. China Civil Engineering Journal, 2014, 47(9): 110-119. DOI:10.15951/j.tmgcxb.2014.09.039. (in Chinese)
[10] Shao X D, Yi D T, Huang Z Y, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer [J]. ASCE Journal of Bridge Engineering, 2013, 18(5): 417-428. DOI:10.1061/(ASCE)BE.1943-5592.0000348.
[11] 张龙威, 赵华, 谭承君, 等. UHPC-钢轻型组合桥面弧形切口受力分析[J]. 中国公路学报, 2016, 29(9): 75-81. DOI:10.19721/j.cnki.1001-7372.2016.09.009.
Zhang L W, Zhao H, Tan C J, et al. Stress analysis on cutout at welded rid-to-diaphragm connections in a light-weight steel-UHPC composite deck[J]. China Journal of Highway and Transport, 2016, 29(9): 75-81. DOI:10.19721/j.cnki.1001-7372.2016.09.009. (in Chinese)
[12] 裴必达, 李立峰, 邵旭东, 等. 钢-UHPC轻型组合桥面板实桥试验研究[J]. 湖南大学学报(自然科学版), 2019, 46(1): 76-84. DOI:10.16339/j.cnki.hdxbzkb.2019.01.008.
Pei B D, Li L F, Shao X D, et al. Research on field measurement of steel-UHPC lightweight composite deck[J]. Journal of Hunan University(Natural Science), 2019, 46(1): 76-84. DOI:10.16339/j.cnki.hdxbzkb.2019.01.008. (in Chinese)
[13] 李传习, 李游, 陈卓异, 等. 基于实测车流的钢箱梁横隔板疲劳特性[J]. 长安大学学报(自然科学版), 2019, 39(5): 48-58. DOI:10.19721/j.cnki.1671-8879.2019.05.006.
Li C X, Li Y, Chen Z Y, et al. Fatigue characteristics of steel box girder based on measured vehicle flow[J]. Journal of Chang’an University(Natural Science Edition), 2019, 39(5): 48-58. DOI:10.19721/j.cnki.1671-8879.2019.05.006. (in Chinese)
[14] 鲁乃唯, 刘扬, 邓扬. 随机车流作用下悬索桥钢桥面板疲劳损伤与寿命评估[J]. 中南大学学报(自然科学版), 2015, 46(11): 4300-4306. DOI:10.11817/j.issn.1672-7207.2015.11.043.
Lu N W, Liu Y, Deng Y. Fatigue damage and life assessment for steel decks of suspension bridge under stochastic traffic flow[J]. Journal of Central South University(Science and Technology), 2015, 46(11): 4300-4306. DOI:10.11817/j.issn.1672-7207.2015.11.043. (in Chinese)
[15] 吉伯海, 朱伟, 傅中秋, 等. 正交异性钢桥面板U肋对接焊缝疲劳寿命评估[J]. 重庆交通大学学报(自然科学版), 2015, 34(1): 16-21. DOI:10.3969 /j.issn.1674-0696.2015.01.04.
Ji B H, Zhu W, Fu Z Q, et al. Fatigue life evaluation of U-rib butt weld of the orthotropic steel bridge[J]. Journal of Chongqing Jiaotong University, 2015, 34(1): 16-21. DOI:10.3969 /j.issn.1674-0696.2015.01.04. (in Chinese)
[16] 刘扬, 鲁乃唯, 邓扬. 基于实测车流的钢桥面板疲劳可靠度评估[J]. 中国公路学报, 2016, 29(5): 58-66. DOI:10.19721/j.cnki.1001-7372.2016.05.008.
Liu Y, Lu N W, Deng Y. Fatigue reliability assessment of steel bridge decks under measured traffic flow[J]. China Journal of Highway and Transport, 2016, 29(5): 58-66. DOI:10.19721/j.cnki.1001-7372.2016.05.008. (in Chinese)
[17] 赵欣欣, 刘晓光, 张玉玲. 正交异性桥面板设计参数和构造细节的疲劳研究进展[J]. 钢结构, 2010, 25(8): 1-7. DOI:10.3969/j.issn.1007-9963.2010.08.001.
Zhao X X, Liu X G, Zhang Y L. New advance of design parameter and structure details of orthotropic deck[J]. Steel Construction, 2010, 25(8): 1-7. DOI:10.3969/j.issn.1007-9963.2010.08.001. (in Chinese)
[18] Sim H B, Uang C M. Stress analyses and parametric study on full-scale fatigue tests of rib-to-deck welded joints in steel orthotropic decks [J]. Journal of Bridge Engineering, 2012, 17(5): 765-773. DOI:10.1061/(ASCE)BE.1943-5592.0000307.
[19] 张允士, 李法雄, 熊锋, 等. 正交异性钢桥面板疲劳裂纹成因分析及控制[J]. 公路交通科技, 2013, 9(8): 75-80. DOI:10.3969/j.issn.1002-0268.2013.08.013.
Zhang Y S, Li F X, Xiong F, et al. Cause analysis and control measures of fatigue cracks in orthotropic steel deck[J]. Journal of Highway and Transportation Research and Development, 2013, 9(8): 75-80. DOI:10.3969/j.issn.1002-0268.2013.08.013. (in Chinese)
[20] 朋茜, 周绪红, 狄谨, 等. 钢桥面板纵肋与横隔板连接位置疲劳损伤特征[J]. 中国公路学报, 2018, 31(11): 78-90.
  Peng X, Zhou X H, Di J, et al. Fatigue damage characteristics of rib-to-diaphragm joints in orthotropic steel deck[J]. China Journal of Highway and Transport, 2018, 31(11): 78-90.(in Chinese)
[21] AASHTO. LRFD bridge design specifications: LRFD-8[S]. Washington, DC, USA: AASHTO, 2017.
[22] 宋永生, 丁幼亮, 王晓晶, 等. 运营状态下悬索桥钢桥面板疲劳效应监测与分析[J]. 工程力学, 2013, 30(11): 94-100. DOI:10.6052/j.issn.1000-4750.2012.07.0551.
Song Y S, Ding Y L, Wang X J, et al. Monitoring and analysis of fatigue effects on steel deck of a suspension bridge in working conditions[J]. Engineering Mechanics, 2013, 30(11): 94-100. DOI:10.6052/j.issn.1000-4750.2012.07.0551. (in Chinese)

相似文献/References:

[1]雷笑,叶见曙,王毅.日照作用下混凝土箱梁的温差代表值[J].东南大学学报(自然科学版),2008,38(6):1105.[doi:10.3969/j.issn.1001-0505.2008.06.032]
 Lei Xiao,Ye Jianshu,Wang Yi.Representative value of solar thermal difference effect on PC box-girder[J].Journal of Southeast University (Natural Science Edition),2008,38(1):1105.[doi:10.3969/j.issn.1001-0505.2008.06.032]
[2]刘华,叶见曙.公路混凝土弯箱梁桥的动反应[J].东南大学学报(自然科学版),2006,36(2):278.[doi:10.3969/j.issn.1001-0505.2006.02.020]
 Liu Hua,Ye Jianshu.Dynamic response of highway concrete curved box girder bridges[J].Journal of Southeast University (Natural Science Edition),2006,36(1):278.[doi:10.3969/j.issn.1001-0505.2006.02.020]
[3]王毅,叶见曙.温度梯度对混凝土曲线箱梁影响的计算方法[J].东南大学学报(自然科学版),2005,35(6):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
 Wang Yi,Ye Jianshu.Computing method of effect of thermal gradient on concrete curved box-girders[J].Journal of Southeast University (Natural Science Edition),2005,35(1):924.[doi:10.3969/j.issn.1001-0505.2005.06.021]
[4]俞博,叶见曙,温天宇.火灾下混凝土空心板的温度场[J].东南大学学报(自然科学版),2009,39(3):536.[doi:10.3969/j.issn.1001-0505.2009.03.022]
 Yu Bo,Ye Jianshu,Wen Tianyu.Temperature field in concrete hollow-slab exposed to fire[J].Journal of Southeast University (Natural Science Edition),2009,39(1):536.[doi:10.3969/j.issn.1001-0505.2009.03.022]
[5]缪长青,李爱群.异形钢管混凝土系杆拱桥结构健康监测系统[J].东南大学学报(自然科学版),2011,41(6):1241.[doi:10.3969/j.issn.1001-0505.2011.06.022]
 Miao Changqing,Li Aiqun.Structural health monitoring system for special-shaped concrete-filled steel tubular arch bridge[J].Journal of Southeast University (Natural Science Edition),2011,41(1):1241.[doi:10.3969/j.issn.1001-0505.2011.06.022]
[6]马磊,万水,蒋正文,等.单箱多室波形钢腹板箱梁荷载横向分布[J].东南大学学报(自然科学版),2014,44(1):145.[doi:10.3969/j.issn.1001-0505.2014.01.026]
 Ma Lei,Wan Shui,Jiang Zhengwen,et al.Load transverse distribution of single box multi-cell girder with corrugated steel webs[J].Journal of Southeast University (Natural Science Edition),2014,44(1):145.[doi:10.3969/j.issn.1001-0505.2014.01.026]
[7]惠迎新,王克海.基于多点激励位移输入模型的跨断层桥梁地震动输入方法[J].东南大学学报(自然科学版),2015,45(3):557.[doi:10.3969/j.issn.1001-0505.2015.03.025]
 Hui Yingxin,Wang Kehai.Earthquake motion input method for bridges crossing fault based on multi-support excitation displacement input model[J].Journal of Southeast University (Natural Science Edition),2015,45(1):557.[doi:10.3969/j.issn.1001-0505.2015.03.025]
[8]林诗枫,黄侨,任远,等.基于南京长江三桥的车辆荷载模型[J].东南大学学报(自然科学版),2016,46(2):365.[doi:10.3969/j.issn.1001-0505.2016.02.022]
 Lin Shifeng,Huang qiao,Ren Yuan,et al.Traffic load model based on the third Nanjing Yangtze river bridge[J].Journal of Southeast University (Natural Science Edition),2016,46(1):365.[doi:10.3969/j.issn.1001-0505.2016.02.022]
[9]廖平,赵人达,贾毅,等.双曲面摩擦摆支座参数对桥梁地震响应的影响[J].东南大学学报(自然科学版),2016,46(6):1251.[doi:10.3969/j.issn.1001-0505.2016.06.024]
 Liao Ping,Zhao Renda,Jia Yi,et al.Effects of hyperbolic surface friction pendulum bearings’ parameters on seismic response of the bridge[J].Journal of Southeast University (Natural Science Edition),2016,46(1):1251.[doi:10.3969/j.issn.1001-0505.2016.06.024]
[10]杨永清,李世伟,蒲黔辉,等.大跨悬浇箱梁桥三维非线性收缩徐变效应[J].东南大学学报(自然科学版),2018,48(6):1036.[doi:10.3969/j.issn.1001-0505.2018.06.008]
 Yang Yongqing,Li Shiwei,Pu Qianhui,et al.3D nonlinear shrinkage and creep effects of long span cantilever casting box girder bridges[J].Journal of Southeast University (Natural Science Edition),2018,48(1):1036.[doi:10.3969/j.issn.1001-0505.2018.06.008]

备注/Memo

备注/Memo:
收稿日期: 2020-07-01.
作者简介: 秦世强(1987—),男,博士,副教授,shiqiangqin@whut.edu.cn.
基金项目: 国家自然科学基金资助项目(51608408)、中央高校基本科研业务费专项资金资助项目(2017IVB046).
引用本文: 秦世强,黄春雷,张佳斌,等.基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J].东南大学学报(自然科学版),2021,51(1):61-70. DOI:10.3969/j.issn.1001-0505.2021.01.009.
更新日期/Last Update: 2021-01-20