[1]黄亮,黄慎江,王静峰,等.实时混合模拟中偶发计算延迟的产生及影响[J].东南大学学报(自然科学版),2021,51(1):80-86.[doi:10.3969/j.issn.1001-0505.2021.01.011]
 Huang Liang,Huang Shenjiang,Wang Jingfeng,et al.Cause and consequence of occasional computational delay in real-time hybrid simulation[J].Journal of Southeast University (Natural Science Edition),2021,51(1):80-86.[doi:10.3969/j.issn.1001-0505.2021.01.011]
点击复制

实时混合模拟中偶发计算延迟的产生及影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第1期
页码:
80-86
栏目:
土木工程
出版日期:
2021-01-20

文章信息/Info

Title:
Cause and consequence of occasional computational delay in real-time hybrid simulation
作者:
黄亮12黄慎江12王静峰12徐伟杰3郭彤3
1合肥工业大学土木与水利工程学院, 合肥 230009; 2合肥工业大学土木工程结构与材料安徽省重点实验室, 合肥 230009; 3东南大学混凝土及预应力混凝土结构教育部重点试验室, 南京 211189
Author(s):
Huang Liang12 Huang Shenjiang12 Wang Jingfeng12 Xu Weijie3 Guo Tong3
1College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
2Anhui Key Laboratory of Civil Engineering Structures and Materials, Hefei University of Technology, Hefei 230009, China
3Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
关键词:
计算延迟 作动器时滞 预测修正 子步技术 实时混合模拟
Keywords:
computational delay actuator delay prediction and correct sub-step technology real-time hybrid simulation
分类号:
TU317.2
DOI:
10.3969/j.issn.1001-0505.2021.01.011
摘要:
为了研究试验中计算延迟的产生及影响,分析了滑移支座试验的计算耗时,并评价了试验的实时性.试验发现,在某些积分步骤中会偶然出现计算延迟,破坏了试验的实时性.计算延迟是由于试验中使用了隐式积分算法,在迭代计算中残差收敛速度缓慢所导致的.计算延迟具有偶然性和随机性,不仅影响了试验构件的加载速率,更使指令位移信号呈S形曲线.该信号命令作动器在短时间内急停急转,作动器需克服巨大的惯性力作用,导致响应延迟显著.通过使用显式积分算法、简化数值模型等方法,可显著减少实时混合模拟的积分计算时间,从而避免了计算延迟现象,保障了试验的实时性.
Abstract:
To investigate the cause and consequence of computational delay in the experiments, the calculation time of sliding isolator tests was analyzed and the real-time performance was evaluated. The results show that the computational delay occasionally appears at some integration steps, thus destroying the real-time performance of the tests. The computational delay is caused by the slow convergence speed of errors in iterative calculations by introducing the implicit integration algorithm into the tests. The computational delay has contingency and randomness, affecting the load rate of the test specimen and making the command displacement signal present S-shaped curves. The signal commands the actuator to switch from deceleration to acceleration in a short time interval, so that the actuator needs to overcome the huge inertial force, resulting in an obvious actuator response delay. By using the explicit integration algorithm and simplifying the numerical model, the calculation time of real-time hybrid simulation can be greatly reduced, thus avoiding the computational delay and ensuring the real-time performance of the tests.

参考文献/References:

[1] Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of actuator delay and dynamics for real-time hybrid structural simulation[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(1): 21-42. DOI:10.1002/eqe.743.
[2] Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing[J].Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79-92. DOI:10.1002/eqe.4290210106.
[3] Nakashima M. Hybrid simulation: An early history[J].Earthquake Engineering & Structural Dynamics, 2020, 49(10): 949-962. DOI:10.1002/eqe.3274.
[4] Carrion J E, Spencer B F Jr. Model-based strategies for real-time hybrid testing[EB/OL].(2008-02-19)[2020-01-20].https://www.ideals.illinois.edu/handle/2142/3629.
[5] Huang L, Chen C,Guo T, et al. Stability analysis of real-time hybrid simulation for time-varying actuator delay using the Lyapunov-Krasovskii functional approach[J]. Journal of Engineering Mechanics, 2019, 145(1): 04018124. DOI:10.1061/(asce)em.1943-7889.0001550.
[6] Xu W J, Guo T, Chen C. Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices[J]. Structural Engineering and Mechanics, 2017, 62(5): 631.
[7] Chae Y, Kazemibidokhti K, Ricles J M. Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(11): 1697-1715. DOI:10.1002/eqe.2294.
[8] 陈永盛,吴斌,王贞, 等.基于Simulink的混合试验系统及其验证[J].振动与冲击, 2014, 33(7):18-23. DOI: 10.13465/j.cnki.jvs.2014.07.004.
Chen Y S, Wu B, Wang Z, et al. Simulation and validation of hybrid testing system based on simulink[J]. Journal of Vibration and Shock, 2014, 33(7): 18-23. DOI:10.13465/j.cnki.jvs.2014.07.004. (in Chinese)
[9] Wu B,Bao H, Ou J, et al. Stability and accuracy analysis of the central difference method for real-time substructure testing[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(7): 705-718. DOI:10.1002/eqe.451.
[10] Newmark N M. A method of computation for structural dynamics[J]. Journal of Engineering Mechanics-ASCE, 1959, 85(3): 67-94.
[11] Chen C,Ricles J M. Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(5): 1021-1041. DOI:10.1002/eqe.1172.
[12] Chung J, Hulbert G M. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method[J].Journal of Applied Mechanics, 1993, 60(2): 371-375. DOI:10.1115/1.2900803.
[13] Bathe K. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J].Computers & Structures, 2007, 85(7): 437-445. DOI:10.1016/j.compstruc.2006.09.004.
[14] Nakashima M,Masaoka N. Real-time on-line test for MDOF systems[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(4): 393-420. DOI:10.1002/(SICI)1096-9845(199904)28:4393::AID-EQE823>3.0.CO;2-C.
[15] 黄亮, 徐伟杰, 郭彤. 含新型滑移支座的并联隔震建筑实时混合模拟试验研究[J]. 振动与冲击, 2017, 36(20): 151-157. DOI: 10.13465/j.cnki.jvs.2017.20.024.
Huang L,Xu W J, Guo T. A real-time hybrid simulation of parallel isolated buildings with novel sliding isolators[J]. Journal of Vibration and Shock, 2017, 36(20): 151-157. DOI:10.13465/j.cnki.jvs.2017.20.024. (in Chinese)
[16] Zhao J, French C E, Shield C K, et al. Considerations for the development of real-time dynamic testing using servo-hydraulic actuation[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(11): 1773-1794. DOI:10.1002/eqe.301.
[17] Chen C,Ricles J M. Development of direct integration algorithms for structural dynamics using discrete control theory[J]. Journal of Engineering Mechanics, 2008, 134(8): 676-683. DOI:10.1061/(asce)0733-9399(2008)134:8(676).
[18] Chang S Y. Explicit pseudodynamic algorithm with unconditional stability[J]. Journal of Engineering Mechanics, 2002, 128(9): 935-947. DOI:10.1061/(asce)0733-9399(2002)128:9(935).
[19] Huang L,Guo T, Chen C, et al. Restoring force correction based on online discrete tangent stiffness estimation method for real-time hybrid simulation[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4): 805-820. DOI:10.1007/s11803-018-0477-2.

备注/Memo

备注/Memo:
收稿日期: 2020-04-20.
作者简介: 黄亮(1986—),男,博士,实验师,huangliang@hfut.edu.cn.
基金项目: 国家自然科学基金资助项目(51478158,51808111,52008145)、中央高校基本科研业务费专项资金资助项目(JZ2020HGQA0203).
引用本文: 黄亮,黄慎江,王静峰,等.实时混合模拟中偶发计算延迟的产生及影响[J].东南大学学报(自然科学版),2021,51(1):80-86. DOI:10.3969/j.issn.1001-0505.2021.01.011.
更新日期/Last Update: 2021-01-20