参考文献/References:
[1] 郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36.
Zheng Y P, Li G Y, Li Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20-36.(in Chinese)
[2] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386.
[3] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136-148.
Xu F, Wang H P, Jin Y Q. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136-148.(in Chinese)
[4] 田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320-325.
Tian Z Z, Zhan R H, Hu J M, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320-325.(in Chinese)
[5]邹浩, 林赟, 洪文. 采用深度学习的多方位角SAR图像目标识别研究[J]. 信号处理, 2018, 34(5): 513-522.
Zou H, Lin Y, Hong W. Research on multi-aspect SAR images target recognition using deep learning[J]. Journal of Signal Processing, 2018, 34(5): 513-522.(in Chinese)
[6] 薛媛. 基于深度神经网络的SAR自动目标识别方法研究[D]. 成都: 电子科技大学, 2019.
Xue Y. Research on SAR automatic target recognition based on deep neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2019.(in Chinese)
[7] 刘彬. 基于卷积神经网络的SAR图像目标检测及分类方法研究[D]. 西安: 西安电子科技大学, 2017.
Liu B. Target detection and classification methods based on convolutional neural network for SAR image[D]. Xi’an: Xidian University, 2017.(in Chinese)
[8] 张笑. 基于深度学习的SAR图像目标识别算法研究[D].南京:南京航空航天大学,2018.
Zhang X. Research on SAR image target recognition based on deep learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.(in Chinese)
[9] Shang R H, Wang J M, Jiao L C, et al. SAR targets classification based on deep memory convolution neural networks and transfer parameters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2834-2846. DOI:10.1109/jstars.2018.2836909.
[10] Girshick R,Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 27th IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:580-587. DOI: 10.1109/CVPR.2014.81.
[11] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI:10.1109/tpami.2015.2389824.
[12] Girshick R. Fast R-CNN[C]// Proceedings of the IEEE Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[13] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/tpami.2016.2577031.
[14] 杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018-3025.
Du L, Liu B, Wang Y, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018-3025.(in Chinese)
[15] 王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195-203.
Wang S Y, Gao X, Sun H, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195-203.(in Chinese)
[16] 常沛, 夏勇, 李玉景, 等. 基于CNN的SAR车辆目标检测[J]. 雷达科学与技术, 2019, 17(2): 220-224, 231.
Chang P, Xia Y, Li Y J, et al. SAR vehicle target detection based on CNN[J]. Radar Science and Technology, 2019, 17(2): 220-224, 231.(in Chinese)