[1]冯鑫,李玲玲,王永康,等.高温退火对石墨烯摩擦性能的影响[J].东南大学学报(自然科学版),2021,51(1):115-120.[doi:10.3969/j.issn.1001-0505.2021.01.016]
 Feng Xin,Li Lingling,Wang Yongkang,et al.Effects of high-temperature annealing on tribological properties of graphene[J].Journal of Southeast University (Natural Science Edition),2021,51(1):115-120.[doi:10.3969/j.issn.1001-0505.2021.01.016]
点击复制

高温退火对石墨烯摩擦性能的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第1期
页码:
115-120
栏目:
机械工程
出版日期:
2021-01-20

文章信息/Info

Title:
Effects of high-temperature annealing on tribological properties of graphene
作者:
冯鑫李玲玲王永康魏志勇
东南大学机械工程学院, 南京 211189; 东南大学江苏省微纳生物医疗器械设计与制造重点实验室, 南京 211189
Author(s):
Feng Xin Li Lingling Wang Yongkang Wei Zhiyong
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
关键词:
原子力显微镜 石墨烯 退火 缺陷密度
Keywords:
atomic force microscope(AFM) graphene annealing density of defects
分类号:
TH117.1
DOI:
10.3969/j.issn.1001-0505.2021.01.016
摘要:
为了探讨高温环境下石墨烯摩擦性能变化对其作为固体润滑剂性能的影响,采用原子力显微镜研究了单层石墨烯在空气中不同温度下退火后的摩擦学性能,比较了不同温度下退火前后摩擦力及黏附力的变化.通过拉曼光谱检测石墨烯的缺陷并计算石墨烯的缺陷密度,最后建立了不同荷载下单层石墨烯摩擦力随缺陷密度的变化关系.实验结果表明:在空气中退火后石墨烯的摩擦力及黏附力显著增强,在空气中300 ℃下退火后石墨烯的摩擦力约为原始石墨烯的2~3倍,黏附力增加了1倍左右,且退火温度越高,摩擦力和黏附力的增强效果越明显;石墨烯在200~300 ℃之间开始产生明显的缺陷,且缺陷密度也随着退火温度的升高而增大.高温退火后石墨烯产生的结构缺陷是导致单层石墨烯摩擦力和黏附力发生重要变化的原因.
Abstract:
To explore the effects of the tribological property changes of the graphene on its performance as a solid lubricant at the high-temperature, the tribological properties of single-layer graphene after annealing in air at different temperatures were studied by an atomic force microscope(AFM), and the changes of the friction and the adhesion before and after annealing at different temperatures were compared. The defects of the graphene were detected by Raman spectroscopy and the defect density of the graphene was calculated. Finally, the relationship between the friction force of single-layer graphene and the defect density was established under different loads. Experimental results show that after annealing in air, the friction and the adhesion of the graphene are significantly enhanced. After annealing at 300 ℃ in air, the friction of the graphene is about 2-3 times that of the original graphene, and the adhesion force roughly doubles. Moreover, the higher the annealing temperature is, the more obvious the enhancement effect of the friction and the adhesion is. The detectable defects initially appear between 200 and 300 ℃, and the defect density increases with the increase of the annealing temperature. The structural defects of the graphene after high-temperature annealing are the cause of important changes in the friction and the adhesion of single-layer graphene.

参考文献/References:

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896.
[2] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534. DOI:10.1126/science.1158877.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. DOI:10.1038/nature04233.
[4] Zhang Y B, Tan Y W,Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J]. Nature, 2005, 438(7065): 201-204. DOI:10.1038/nature04235.
[5] Demirba瘙塂 T, Baykara M Z. Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates[J]. Journal of Materials Research, 2016, 1(13): 1-10. DOI:10.1557/jmr.2016.11.
[6] Egberts P, Han G H, Liu X Z, et al. Frictional behavior of atomically thin sheets: Hexagonal-shaped graphene islands grown on copper by chemical vapor deposition[J]. ACS Nano, 2014, 8(5): 5010-5021. DOI:10.1021/nn501085g.
[7] Lavini F, Calò A, Gao Y, et al. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2[J]. Nanoscale, 2018, 10(17): 8304-8312. DOI:10.1039/c8nr00238j.
[8] Lee C, Li Q, Kalb W, et al. Frictional characteristics of atomically thin sheets[J].Science, 2010, 328(5974): 76-80. DOI:10.1126/science.1184167.
[9] Ptak F, Almeida C M, Prioli R. Velocity-dependent friction enhances tribomechanical differences between monolayer and multilayer graphene[J]. Scientific Reports, 2019, 9(1): 1-9. DOI:10.1038/s41598-019-51103-1.
[10] Schumacher A, Kruse N,Prins R, et al. Influence of humidity on friction measurements of supported MoS2 single layers[J]. Journal of Vacuum Science & Technology B, 1996, 14(2): 1264-1267. DOI:10.1116/1.588528.
[11] Tripathi M, Awaja F, Bizao R A, et al. Friction and adhesion of different structural defects of graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44614-44623. DOI:10.1021/acsami.8b10294.
[12] Vazirisereshk M R, Ye H, Ye Z J, et al. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure[J]. Nano Letters, 2019, 19(8): 5496-5505. DOI:10.1021/acs.nanolett.9b02035.
[13] Ye Z J,Balkanci A, Martini A, et al. Effect of roughness on the layer-dependent friction of few-layer graphene[J]. Physical Review B, 2017, 96(11): 115401. DOI:10.1103/physrevb.96.115401.
[14] Berman D,Erdemir A, Sumant A V. Graphene: A new emerging lubricant[J]. Materials Today, 2014, 17(1): 31-42. DOI:10.1016/j.mattod.2013.12.003.
[15] Berman D,Erdemir A, Sumant A V. Approaches for achieving superlubricity in two-dimensional materials[J]. ACS Nano, 2018, 12(3): 2122-2137. DOI:10.1021/acsnano.7b09046.
[16] Kim K S, Lee H J, Lee C, et al. Chemical vapor deposition-grown graphene: The thinnest solid lubricant[J]. ACS Nano, 2011, 5(6): 5107-5114. DOI:10.1021/nn2011865.
[17] Nan H Y, Ni Z H, Wang J, et al. The thermal stability of graphene in air investigated by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2013, 44(7): 1018-1021. DOI:10.1002/jrs.4312.
[18] Wang Q,Bai B, Li Y, et al. Investigating the nano-tribological properties of chemical vapor deposition-grown single layer graphene on SiO2substrates annealed in ambient air[J]. RSC Advances, 2015, 5(13): 10058-10064. DOI:10.1039/c4ra12437e.
[19] Cançado L G, Jorio A, Ferreira E H M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11(8): 3190-3196. DOI:10.1021/nl201432g.
[20] Chen C C, Bao W Z, Chang C C, et al. Raman spectroscopy of substrate-induced compression and substrate doping in thermally cycled graphene[J]. Physical Review B, 2012, 85(3): 035431. DOI:10.1103/physrevb.85.035431.
[21] Tian S B, Yang Y, Liu Z, et al. Temperature-dependent Raman investigation on suspended graphene: Contribution from thermal expansion coefficient mismatch between graphene and substrate[J]. Carbon, 2016, 104: 27-32. DOI:10.1016/j.carbon.2016.03.046.
[22] Sader J E, Chon J W M, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10): 3967-3969. DOI:10.1063/1.1150021.
[23] Schaefer D M, Gomez J. Atomic force microscope techniques for adhesion measurements[J].The Journal of Adhesion, 2000, 74(1/2/3/4): 341-359. DOI:10.1080/00218460008034535.
[24] Ferrari A C,Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. DOI:10.1038/nnano.2013.46.
[25] Yan W, Phillips L C, Barbone M, et al. Long spin diffusion length in few-layer graphene flakes[J]. Physical Review Letters, 2016, 117(14): 147201. DOI: 10.1103/PhysRevLett.117.147201.
[26] Beams R,Cancado L G, Novotny L. Raman characterization of defects and dopants in graphene[J]. Journal of Physics Condensed Matter, 2015, 27(8): 083002. DOI:10.1088/0953-8984/27/8/083002.
[27] Chen J H, Cullen W G, Jang C, et al. Defect scattering in graphene[J]. Physical Review Letters, 2009, 102(23): 236805. DOI:10.1103/physrevlett.102.236805.
[28] Dresselhaus M S, Jorio A, Filho A G S, et al. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2010, 368(1932): 5355-5377. DOI:10.1098/rsta.2010.0213.
[29] Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012, 12(8): 3925-3930. DOI:10.1021/nl300901a.
[30] Butt H J, Cappella B,Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. DOI:10.1016/j.surfrep.2005.08.003.
[31] Wei Z Y,Duan Z Q, Kan Y J, et al. Phonon energy dissipation in friction between graphene/graphene interface[J]. Journal of Applied Physics, 2020, 127(1): 015105. DOI:10.1063/1.5130705.
[32] Choi J S, Kim J S, Byun I S, et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene[J]. Science, 2011, 333(6042): 607-610. DOI: 10.1126/science.1207110.
[33] Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102(8): 086102. DOI:10.1103/PhysRevLett.102.086102.
[34] Anno Y, Takeuchi M, Matsuoka M, et al. Effect of defect-induced carrier scattering on the thermoelectric power of graphene[J]. Applied Physics Letters, 2017, 110(26): 263501. DOI:10.1063/1.4989820.

相似文献/References:

[1]张艳,卜浩,王玉娟,等.基于原子力显微镜的纳米尺度摩擦力的速度依赖关系[J].东南大学学报(自然科学版),2012,42(2):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
 Zhang Yan,Pu Hao,Wang Yujuan,et al.Velocity-dependent nano-scale friction under atomic force microscope[J].Journal of Southeast University (Natural Science Edition),2012,42(1):286.[doi:10.3969/j.issn.1001-0505.2012.02.018]
[2]孙颖,等.白蛋白和石墨烯的结构及其相互作用的分子动力学模拟[J].东南大学学报(自然科学版),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
 Sun Ying,Ding Jiali,et al.Molecular dynamics simulations of albumin and graphene structures and their interaction[J].Journal of Southeast University (Natural Science Edition),2014,44(1):123.[doi:10.3969/j.issn.1001-0505.2014.01.022]
[3]董赟,刘晨晗,段早琦,等.石墨烯的摩擦力和刚度关系的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]
 Dong Yun,Liu Chenhan,Duan Zaoqi,et al.Molecular dynamics simulations of stiffness-dependent friction of graphene[J].Journal of Southeast University (Natural Science Edition),2017,47(1):28.[doi:10.3969/j.issn.1001-0505.2017.01.006]

备注/Memo

备注/Memo:
收稿日期: 2020-06-11.
作者简介: 冯鑫(1996—),男,硕士生;魏志勇(联系人),男,博士,副教授,zywei@seu.edu.cn.
引用本文: 冯鑫,李玲玲,王永康,等.高温退火对石墨烯摩擦性能的影响[J].东南大学学报(自然科学版),2021,51(1):115-120. DOI:10.3969/j.issn.1001-0505.2021.01.016.
更新日期/Last Update: 2021-01-20