[1]尹玉明,赵伶玲,高腾.基于分子动力学的镁橄榄石表面分子吸附与溶解研究[J].东南大学学报(自然科学版),2021,(1):121-128.[doi:10.3969/j.issn.1001-0505.2021.01.017]
 Yin Yuming,Zhao Lingling,Gao Teng.Study on molecules adsorption and dissolution on the surface of forsterite based on molecular dynamics[J].Journal of Southeast University (Natural Science Edition),2021,(1):121-128.[doi:10.3969/j.issn.1001-0505.2021.01.017]
点击复制

基于分子动力学的镁橄榄石表面分子吸附与溶解研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
期数:
2021年第1期
页码:
121-128
栏目:
环境科学与工程
出版日期:
2021-01-20

文章信息/Info

Title:
Study on molecules adsorption and dissolution on the surface of forsterite based on molecular dynamics
作者:
尹玉明赵伶玲高腾
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Yin Yuming Zhao Lingling Gao Teng
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
二氧化碳 吸附 解吸附 岩石溶解 离子交换 分子模拟
Keywords:
carbon dioxide adsorption desorption rock dissolution ion exchange molecular simulation
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2021.01.017
摘要:
采用分子动力学模拟方法研究了镁橄榄石(Mg2SiO4)表面的吸附特性和溶解过程.计算了H2O、CO2在Mg2SiO4(010)表面的吸附能、径向分布函数、解吸附能量壁垒,探讨了Mg2SiO4(010)表面上Mg2+、Si4+在纯水和离子浓度为1 mol/L的NaCl、KCl、CaCl2、H3OCl、Na2CO3溶液中的溶解活化能,分析了盐离子对Mg2SiO4表面溶解的影响.结果表明:H2O分子在Mg2SiO4(010)表面的吸附能绝对值和解吸附能量壁垒均高于CO2分子,H2O和CO2分子在Mg2SiO4(010)表面分别为双层吸附和单层吸附;NaCl、KCl溶液对Mg2SiO4表面溶解的影响较小,CaCl2溶液中的Ca2+能够与该表面的Mg2+发生离子交换,H3OCl溶液中较多的H3O+出现在该表面附近,加速了表面溶解,Na2CO3溶液中的CO2-3与该表面的Mg2+形成离子对,显著促进了Mg2SiO4表面的溶解.
Abstract:
Molecular dynamics simulations were performed to study the molecular adsorption properties and dissolution process on the forsterite(Mg2SiO4)surface. The adsorption energy, radial distribution function and desorption energy barrier of H2O and CO2 on Mg2SiO4(010)surface were calculated. The activation energies for Mg2+ and Si4+ dissolution on Mg2SiO4(010)surface, in both pure water and 1 mol/L NaCl, KCl, CaCl2, H3OCl, Na2CO3 saline solutions, were discussed. The effects of salt ions on the surface dissolution of Mg2SiO4 were analyzed. The calculation results show that the absolute values for both adsorption and desorption energy barriers of H2O are larger than those of CO2. Consistently, H2O is double-layer adsorbed on Mg2SiO4(010)surface, whereas one-layer for CO2. Besides, the effects of NaCl and KCl on the dissolution of Mg2SiO4 surface are minimal; Ca2+in CaCl2 solution can exchange Mg2+on the Mg2SiO4 surface, enhancing the dissolution rate of Mg2SiO4 crystal; a considerable number of H3O+ in H3OCl solution appear near the surface of Mg2SiO4, accelerating the surface dissolution; CO2-3 in Na2CO3 solution forms ion pairs with Mg2+ on the surface, which significantly promotes the dissolution of Mg2SiO4 surface.

参考文献/References:

[1] Black J R, Carroll S A, Haese R R. Rates of mineral dissolution under CO2 storage conditions[J]. Chemical Geology, 2015, 399: 134-144. DOI:10.1016/j.chemgeo.2014.09.020.
[2] Miller Q R S, Thompson C J, Loring J S, et al. Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids[J]. International Journal of Greenhouse Gas Control, 2013, 15: 104-118. DOI:10.1016/j.ijggc.2013.02.005.
[3] Humez P, Négrel P, Lagneau V, et al. CO2-water-mineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test[J]. Chemical Geology, 2014, 368: 11-30. DOI:10.1016/j.chemgeo.2014.01.001.
[4] Miller Q R S, Schaef H T, Kaszuba J P, et al. Quantitative review of olivine carbonation kinetics: Reactivity trends, mechanistic insights, and research frontiers[J]. Environmental Science and Technology Letters, 2019, 6(8): 431-442. DOI: 10.1021/acs.estlett.9b00301.
[5] Kerisit S, Weare J H, Felmy A R. Structure and dynamics of forsterite-scCO2/H2O interfaces as a function of water content[J]. Geochimica et Cosmochimica Acta, 2012, 84: 137-151. DOI:10.1016/j.gca.2012.01.038.
[6] Felmy A R, Qafoku O, Arey B W, et al. Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures[J]. Geochimica et Cosmochimica Acta, 2012, 91: 271-282. DOI:10.1016/j.gca.2012.05.026.
[7] Kerisit S, Bylaska E J, Felmy A R. Water and carbon dioxide adsorption at olivine surfaces[J].Chemical Geology, 2013, 359: 81-89. DOI:10.1016/j.chemgeo.2013.10.004.
[8] Giammar D E, Bruant R G Jr, Peters C A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J].Chemical Geology, 2005, 217(3/4): 257-276. DOI:10.1016/j.chemgeo.2004.12.013.
[9] Pokrovsky O S, Schott J. Kinetics and mechanism of forsterite dissolution at 25 ℃ and pH from 1 to 12[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3313-3325. DOI:10.1016/S0016-7037(00)00434-8.
[10] Wang L Q, Hou D S, Shang H S, et al. Molecular dynamics study on the Tri-calcium silicate hydration in sodium sulfate solution: Interface structure, dynamics and dissolution mechanism[J]. Construction and Building Materials, 2018, 170: 402-417. DOI:10.1016/j.conbuildmat.2018.03.035.
[11] Manzano H, Durgun E, López-Arbeloa I, et al. Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations[J].ACS Applied Materials & Interfaces, 2015, 7(27): 14726-14733. DOI:10.1021/acsami.5b02505.
[12] Wang J W, Kalinichev A G, Kirkpatrick R J. Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study[J].Geochimica et Cosmochimica Acta, 2006, 70(3): 562-582. DOI:10.1016/j.gca.2005.10.006.
[13] Cygan R T, Romanov V N, Myshakin E M. Molecular simulation of carbon dioxide capture by montmorillonite using an accurate and flexible force field[J].The Journal of Physical Chemistry C, 2012, 116(24): 13079-13091. DOI:10.1021/jp3007574.
[14] Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J].The Journal of Physical Chemistry B, 2004, 108: 1255-1266. DOI:10.1021/jp0363287.
[15] Greathouse J A, O’Brien R J, Bemis G, et al. Molecular dynamics study of aqueous uranyl interactions with quartz(010)[J].The Journal of Physical Chemistry B, 2002, 106(7): 1646-1655. DOI:10.1021/jp013250q.
[16] Bonthuis D J, Mamatkulov S I, Netz R R. Optimization of classical nonpolarizable force fields for OH(-)and H3O(+)[J].The Journal of Chemical Physics, 2016, 144(10): 104503. DOI:10.1063/1.4942771.
[17] Delhommelle J, Millié P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation[J].Molecular Physics, 2001, 99(8): 619-625. DOI:10.1080/00268970010020041.
[18] Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N)method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092. DOI:10.1063/1.464397.
[19] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1 100 K at pressures up to 800 MPa[J].Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596. DOI:10.1063/1.555991.
[20] Liu L, Du J G, Zhao J J, et al. Elastic properties of hydrous forsterites under high pressure: First-principle calculations[J].Physics of the Earth and Planetary Interiors, 2009, 176(1/2): 89-97. DOI:10.1016/j.pepi.2009.04.004.
[21] Caddeo C, Saba M I, Meloni S, et al. Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water[J]. ACS Nano, 2017, 11(9): 9183-9190. DOI:10.1021/acsnano.7b04116.

相似文献/References:

[1]仲兆平,金保升,黄亚继,等.管道喷射吸附法净化垃圾焚烧尾气试验研究[J].东南大学学报(自然科学版),2005,35(1):116.[doi:10.3969/j.issn.1001-0505.2005.01.025]
 Zhong Zhaoping,Jin Baosheng,Huang Yaji,et al.Experimental study on flue gas purifying of MSW incineration using an in-pipe jet adsorption technics[J].Journal of Southeast University (Natural Science Edition),2005,35(1):116.[doi:10.3969/j.issn.1001-0505.2005.01.025]
[2]高永红,马全红,邹宗柏.α-酮戊二酸改性壳聚糖对金属离子的吸附性能[J].东南大学学报(自然科学版),2001,31(1):104.[doi:10.3969/j.issn.1001-0505.2001.01.023]
 Gao Yonghong,Ma Quanhong,Zou Zongbai.Adsorption Property for Metal Ions of Chitosan Modified by α-Ketoglutaric Acid[J].Journal of Southeast University (Natural Science Edition),2001,31(1):104.[doi:10.3969/j.issn.1001-0505.2001.01.023]
[3]孙越,唐松林,夏明芳,等.胺基化树脂对水溶液中对甲苯胺的吸附性能[J].东南大学学报(自然科学版),2009,39(2):363.[doi:10.3969/j.issn.1001-0505.2009.02.033]
 Sun Yue,Tang Songlin,Xia Mingfang,et al.Adsorption behavior of aminated polymeric resin for adsorpting p-methylaniline from aqueous solution[J].Journal of Southeast University (Natural Science Edition),2009,39(1):363.[doi:10.3969/j.issn.1001-0505.2009.02.033]
[4]马全红,高永红,邹宗柏.丙酮酸壳聚糖衍生物的制备及其吸附性能研究[J].东南大学学报(自然科学版),2000,30(6):127.[doi:10.3969/j.issn.1001-0505.2000.06.027]
 Ma Quanhong,Gao Yonghong,Zou Zongbai.Synthesis and Adsorption Properties of Chitosan Modified by Pyruvic Acid[J].Journal of Southeast University (Natural Science Edition),2000,30(1):127.[doi:10.3969/j.issn.1001-0505.2000.06.027]
[5]余健,孙寿家,朱祥.三相流化床催化氧化处理含氰废水[J].东南大学学报(自然科学版),1991,21(3):108.[doi:10.3969/j.issn.1001-0505.1991.03.016]
 She Jian,Sun Shoujia,Sun Shoujia,et al.Treatment of Waste Water Containing Cyanides by Catalytic Oxidation on Activated Carbon within GLSFB[J].Journal of Southeast University (Natural Science Edition),1991,21(1):108.[doi:10.3969/j.issn.1001-0505.1991.03.016]
[6]秦庆东,陈志真,傅大放,等.巯基化MCM-41对水中Hg(Ⅱ)的吸附[J].东南大学学报(自然科学版),2013,43(5):1011.[doi:10.3969/j.issn.1001-0505.2013.05.019]
 Qin Qingdong,Chen Zhizhen,Fu Dafang,et al.Adsorption of Hg(Ⅱ)in water by thiol-functionalized MCM-41[J].Journal of Southeast University (Natural Science Edition),2013,43(1):1011.[doi:10.3969/j.issn.1001-0505.2013.05.019]
[7]杨小丽,黄克虎.不同生物载体对雌酮的吸附性能[J].东南大学学报(自然科学版),2013,43(6):1269.[doi:10.3969/j.issn.1001-0505.2013.06.026]
 Yang Xiaoli,Huang Kehu.Adsorption behaviors of estrone onto different biological carriers[J].Journal of Southeast University (Natural Science Edition),2013,43(1):1269.[doi:10.3969/j.issn.1001-0505.2013.06.026]
[8]齐齐,王育乔,宋坤忠,等.OH-在Si(100)面上的吸附与脱附作用机理[J].东南大学学报(自然科学版),2007,37(1):141.[doi:10.3969/j.issn.1001-0505.2007.01.030]
 Qi Qi,Wang Yuqiao,Song Kunzhong,et al.OH-adsorption and desorption mechanism on Si(100)surface[J].Journal of Southeast University (Natural Science Edition),2007,37(1):141.[doi:10.3969/j.issn.1001-0505.2007.01.030]
[9]刘焱,王世和,吴玲琳,等.工业废渣基复合除磷材料的吸附动力学及热力学分析[J].东南大学学报(自然科学版),2009,39(6):1231.[doi:10.3969/j.issn.1001-0505.2009.06.028]
 Liu Yan,Wang Shihe,Wu Linglin,et al.Adsorption kinetics and thermodynamics of efficient phosphorus removal composite[J].Journal of Southeast University (Natural Science Edition),2009,39(1):1231.[doi:10.3969/j.issn.1001-0505.2009.06.028]
[10]姚书恒,姜小祥,沈德魁,等.稻壳活性炭对Cr(Ⅵ)离子吸附过程的机理[J].东南大学学报(自然科学版),2015,45(3):515.[doi:10.3969/j.issn.1001-0505.2015.03.018]
 Yao Shuheng,Jiang Xiaoxiang,Shen Dekui,et al.Mechanism of removal of Cr(Ⅵ)ions in water by activated carbon prepared from rice husk[J].Journal of Southeast University (Natural Science Edition),2015,45(1):515.[doi:10.3969/j.issn.1001-0505.2015.03.018]

备注/Memo

备注/Memo:
收稿日期: 2020-08-18.
作者简介: 尹玉明(1993—),男,博士生;赵伶玲(联系人),女,博士,教授,博士生导师,zhao_lingling@seu.edu.cn.
基金项目: 国家自然科学基金面上资助项目(51776041).
引用本文: 尹玉明,赵伶玲,高腾.基于分子动力学的镁橄榄石表面分子吸附与溶解研究[J].东南大学学报(自然科学版),2021,51(1):121-128. DOI:10.3969/j.issn.1001-0505.2021.01.017.
更新日期/Last Update: 2021-01-20