[1]余静财,李文权,王顺超,等.共享电动汽车选择行为分析[J].东南大学学报(自然科学版),2021,(1):153-160.[doi:10.3969/j.issn.1001-0505.2021.01.021]
 Yu Jingcai,Li Wenquan,Wang Shunchao,et al.Analysis of the selection behavior of shared electric vehicles[J].Journal of Southeast University (Natural Science Edition),2021,(1):153-160.[doi:10.3969/j.issn.1001-0505.2021.01.021]
点击复制

共享电动汽车选择行为分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
期数:
2021年第1期
页码:
153-160
栏目:
交通运输工程
出版日期:
2021-01-20

文章信息/Info

Title:
Analysis of the selection behavior of shared electric vehicles
作者:
余静财李文权王顺超马景峰
东南大学交通学院, 南京210096
Author(s):
Yu Jingcai Li Wenquan Wang Shunchao Ma Jingfeng
School of Transportation, Southeast University, Nanjing 210096, China
关键词:
共享电动汽车 出行行为 结构方程模型 多项Logit模型 混合选择模型
Keywords:
electric vehicle timeshare rentals travel behavior structural equation model multinomial Logit model mixed choice model
分类号:
U491
DOI:
10.3969/j.issn.1001-0505.2021.01.021
摘要:
为探索共享电动汽车选择行为,构建出行行为选择模型,基于南京市出行者选择行为调查数据,采用计划行为理论、技术接受理论和结构方程模型,综合考虑出行者个人社会属性、出行特征及潜变量,分别构建不包括潜变量的多项Logit模型和包括潜变量的混合选择模型,并对这些因素进行显著性和敏感性分析.结果表明:不包括潜变量的多项Logit模型中,模型拟合系数(伪R2)为0.275>0.2,表明模型拟合效果较好,年龄、收入、拥有机动车、受教育程度、对共享电动汽车了解程度等因素存在显著影响;在包括潜变量的混合选择模型中,模型拟合系数(伪R2)为 0.354>0.275,表明模型拟合效果优于多项Logit模型,对共享电动汽车了解程度、拥有机动车、舒适性、快捷性、行为态度、使用偏好、行为意向、使用障碍、站点障碍、车辆障碍、个人障碍等因素存在显著影响.
Abstract:
To explore the effects of electric vehicle timeshare rentals(EVTR)on choice behavior, and construct the travel choice behavior model, the planned behavior theory, technology acceptance theory, and structural equation model are used based on the data in Nanjing. The multinomial Logit models without latent variables and the mixed choice model with latent variables are constructed based on the socioeconomic, travel attributes and latent attributes of travelers. The significance and sensitivity of these factors are analyzed. The results show that the fitting coefficient(pseudo R2)is 0.275>0.2 in the multinomial Logit models without latent variables, and the effect is good. The factors, such as age, income, ownership of vehicles, education and familiarity with EVTR, have significant influence. The fitting coefficient(pseudo R2)is 0.354>0.275 of the mixed choice model with latent variables, indicating that the accuracy of the mixed choice model is better than that of the multinomial Logit model. The factors, such as familiarity with EVTR, car ownership, comfort attribute, efficient attribute, consciousness, use preference, behavioral intention, use obstacles, station obstacles, vehicle obstacles, and personal obstacles, have a significant influence.

参考文献/References:

[1] Li N, Chen J P, Tsai I C, et al. Potential impacts of electric vehicles on air quality in Taiwan[J].Science of the Total Environment, 2016, 566/567: 919-928. DOI:10.1016/j.scitotenv.2016.05.105.
[2] Dai D, Leng R B, Zhang C, et al. Using hybrid modeling for life cycle assessment of motor bike and electric bike[J].Journal of Central South University of Technology, 2005, 12(2): 77-80. DOI:10.1007/s11771-005-0014-0.
[3] Glotz-Richter M. Car-sharing-“car-on-call” for reclaiming street space[J]. Procedia-Social and Behavioral Sciences, 2012, 48: 1454-1463. DOI:10.1016/j.sbspro.2012.06.1121.
[4] Chen T D, Kockelman K M. Carsharing’s life-cycle impacts on energy use and greenhouse gas emissions[J].Transportation Research Part D: Transport and Environment, 2016, 47: 276-284. DOI:10.1016/j.trd.2016.05.012.
[5] Acheampong R A, Cugurullo F. Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars[J].Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 349-375. DOI:10.1016/j.trf.2019.01.009.
[6] Mattia G, Guglielmetti Mugion R, Principato L. Shared mobility as a driver for sustainable consumptions: The intention to re-use free-floating car sharing[J].Journal of Cleaner Production, 2019, 237: 117404. DOI:10.1016/j.jclepro.2019.06.235.
[7] Schultz C L, Wellard R, Swerissen H. Communication and interpersonal helping skills: An essential component in physiotherapy education?[J].Australian Journal of Physiotherapy, 1988, 34(2): 75-80. DOI:10.1016/S0004-9514(14)60601-2.
[8] Loose W, Mohr M, Nobis C. Assessment of the future development of car sharing in Germany and related opportunities[J].Transport Reviews, 2006, 26(3): 365-382. DOI:10.1080/01441640500495096.
[9] Costain C, Ardron C, Habib K N. Synopsis of users’ behaviour of a carsharing program: A case study in Toronto[J].Transportation Research Part A: Policy and Practice, 2012, 46(3): 421-434. DOI:10.1016/j.tra.2011.11.005.
[10] Kim D, Ko J, Park Y. Factors affecting electric vehicle sharing program participants’ attitudes about car ownership and program participation[J].Transportation Research Part D: Transport and Environment, 2015, 36: 96-106. DOI:10.1016/j.trd.2015.02.009.
[11] Shaheen S A, Cano L A, Camel M L, et al. Electric vehicle carsharing in a senior adult community in the San Francisco bay area [C]// Transportation Research Board Meeting. Washington, DC,USA, 2013. https://xueshu.baidu.com/usercenter/paper/show?paperid=e433d90fc1b53d818701a3dbbc359f10.
[12] 邱雷. 汽车共享服务在中国的市场前景与营销策略研究——基于上海市场消费者调研报告的实证分析 [D]. 上海:复旦大学, 2009.
  Qiu L. Research on the market prospect and marketing strategy of car sharing service in China—Empirical analysis based on the consumer survey report of Shanghai market[D]. Shanghai: Fudan University, 2009.(in Chinese)
[13] 薛跃, 杨同宇, 温素彬. 汽车共享消费的发展模式及社会经济特性分析[J]. 技术经济与管理研究, 2008(1): 54-58.DOI: 10.3969/j.issn.1004-292X.2008.01.022.
Xue Y,Yang T Y, Wen S B. Social characteristics and development models of car sharing[J]. Technoeconomics & Management Research, 2008(1): 54-58. DOI:10.3969/j.issn.1004-292X.2008.01.022. (in Chinese)
[14] 鞠鹏, 周晶, 徐红利, 等. 基于混合选择模型的汽车共享选择行为研究[J]. 交通运输系统工程与信息, 2017, 17(2): 7-13. DOI: 10.16097/j.cnki.1009-6744.2017.02.002.
Ju P, Zhou J, Xu H L, et al. Travelers’ choice behavior of car sharing based on hybrid choice model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 7-13. DOI:10.16097/j.cnki.1009-6744.2017.02.002. (in Chinese)
[15] 吴娇蓉, 王宇沁, 林子旸, 等. 综合体分时租赁小汽车对出行方式转移行为影响[J]. 同济大学学报(自然科学版), 2020, 48(1): 60-67.DOI: 10.11908/j.issn.0253-374x.19168.
Wu J R, Wang Y Q, Lin Z Y, et al. Impact of time-sharing automobile on modal shift behavior in urban complex[J]. Journal of Tongji University(Natural Science), 2020, 48(1): 60-67. DOI:10.11908/j.issn.0253-374x.19168. (in Chinese)
[16] 陈月霞, 陈龙, 查奇芬, 等. 基于潜变量SVM的出行方式预测模型[J]. 东南大学学报(自然科学版), 2016, 46(6): 1313-1317. DOI: 10.3969/j.issn.1001-0505.2016.06.034.
Chen Y X, Chen L, Zha Q F, et al. Forecasting model of travel mode based on latent variable SVM[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(6): 1313-1317. DOI:10.3969/j.issn.1001-0505.2016.06.034. (in Chinese)
[17] Cheon J, Lee S, Crooks S M, et al. An investigation of mobile learning readiness in higher education based on the theory of planned behavior[J].Computers & Education, 2012, 59(3): 1054-1064. DOI:10.1016/j.compedu.2012.04.015.
[18] Venkatesh V, Davis F D. A theoretical extension of the technology acceptance model: Four longitudinal field studies[J].Management Science, 2000, 46(2): 186-204. DOI:10.1287/mnsc.46.2.186.11926.
[19] Mathieson K. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior[J].Information Systems Research, 1991, 2(3): 173-191. DOI:10.1287/isre.2.3.173.
[20] Leguina A. Structural equation modeling[J]. International Journal of Research & Method in Education, 2015, 38(2):220-221. Doi:10.1002/9781118625392.wbecp384.
[21] Kiani Z, Simbar M, Dolatian M, et al. Structural equation modeling of psychosocial determinants of health for the empowerment of Iranian women in reproductive decision making[J].BMC Women’s Health, 2020, 20: 19. DOI:10.1186/s12905-020-0893-0.
[22] 程龙, 陈学武. 基于结构方程的城市低收入通勤者活动—出行行为模型[J]. 东南大学学报(自然科学版), 2015, 45(5): 1013-1019. DOI: 10.3969/j.issn.1001-0505.2015.05.034.
Cheng L, Chen X W. Activity-travel behavior model of urban low-income commuters based on structural equation[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(5): 1013-1019. DOI:10.3969/j.issn.1001-0505.2015.05.034. (in Chinese)
[23] 丁乃侃, 朱顺应, 王红, 等. 边缘标线影响跟车车距调节行为的结构方程模型[J]. 东南大学学报(自然科学版), 2016, 46(3): 635-640.DOI: 10.3969/j.issn.1001-0505.2016.03.030.
Ding N K, Zhu S Y, Wang H, et al. Structural equation model of edge line markings influencing distance headway adjusting behavior in car-following[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(3): 635-640. DOI:10.3969/j.issn.1001-0505.2016.03.030. (in Chinese)
[24] 李志斌, 杨晨, 王炜, 等. 基于出行态度的自行车通勤出行市场划分[J]. 东南大学学报(自然科学版), 2012, 42(4): 784-789.DOI: 10.3969/j.issn.1001-0505.2012.04.039.
Li Z B, Yang C, Wang W, et al. Bicycle commuting market segmentation analysis using attitudinal factors[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(4): 784-789. DOI:10.3969/j.issn.1001-0505.2012.04.039. (in Chinese)
[25] Bamberg S, Ajzen I, Schmidt P. Choice of travel mode in the theory of planned behavior: The roles of past behavior, habit, and reasoned action[J]. Basic and Applied Social Psychology, 2003, 25(3): 175-187. DOI:10.1207/s15324834basp2503_01.
[26] 解坤, 张俊芳. 基于KMO-Bartlett典型风速选取的PCA-WNN短期风速预测[J]. 发电设备, 2017, 31(2): 86-91.DOI: 10.3969/j.issn.1671-086X.2017.02.004.
Xie K, Zhang J F. Short-term wind speed forecasting using PCA-WNN based on KMO-Bartlett typical wind speed selection[J]. Power Equipment, 2017, 31(2): 86-91. DOI:10.3969/j.issn.1671-086X.2017.02.004. (in Chinese)
[27] Cleophas T J, Zwinderman A H. Structural equation modeling(SEM)with SPSS analysis of moment structures(Amos)for cause effect relationships in pharmacodynamic studies Ⅱ(35 patients)[M]//Machine Learning in Medicine—a Complete Overview. Switzerland: Springer International Publishing, 2015: 301-306. DOI:10.1007/978-3-319-15195-3_49.
[28] Nkurunziza A, Zuidgeest M, Brussel M, et al. Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam[J].Transport Policy, 2012, 24: 249-259. DOI:10.1016/j.tranpol.2012.09.002.

相似文献/References:

[1]孙华灿,李旭宏,刘艳忠,等.容量限制分配的蚁群优化算法[J].东南大学学报(自然科学版),2009,39(1):177.[doi:10.3969/j.issn.1001-0505.2009.01.034]
 Sun Huacan,Li Xuhong,Liu Yanzhong,et al.Ant colony optimization arithmetic of capacity restraint traffic assignment[J].Journal of Southeast University (Natural Science Edition),2009,39(1):177.[doi:10.3969/j.issn.1001-0505.2009.01.034]

备注/Memo

备注/Memo:
收稿日期: 2020-08-03.
作者简介: 余静财(1992—),男,博士生;李文权(联系人),男,博士,教授,博士生导师,wenqli@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2018YFB1601001).
引用本文: 余静财,李文权,王顺超,等.共享电动汽车选择行为分析[J].东南大学学报(自然科学版),2021,51(1):153-160. DOI:10.3969/j.issn.1001-0505.2021.01.021.
更新日期/Last Update: 2021-01-20