[1]沈永俊,谭旭,Tom Brijs.结合功能测试与模拟驾驶的老年人驾驶适性评估[J].东南大学学报(自然科学版),2021,(1):171-177.[doi:10.3969/j.issn.1001-0505.2021.01.023]
 Shen Yongjun,Tan Xu,Tom Brijs.Fitness-to-drive evaluation for elderly drivers by combining functional ability test and simulated driving[J].Journal of Southeast University (Natural Science Edition),2021,(1):171-177.[doi:10.3969/j.issn.1001-0505.2021.01.023]
点击复制

结合功能测试与模拟驾驶的老年人驾驶适性评估()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
期数:
2021年第1期
页码:
171-177
栏目:
交通运输工程
出版日期:
2021-01-20

文章信息/Info

Title:
Fitness-to-drive evaluation for elderly drivers by combining functional ability test and simulated driving
作者:
沈永俊1谭旭1Tom Brijs2
1东南大学交通学院, 南京 211189; 2Transportation Research Institute(IMOB), Hasselt University, Hasselt 3500, Belgium
Author(s):
Shen Yongjun1 Tan Xu1 Tom Brijs2
1School of Transportation, Southeast University, Nanjing 211189, China
2Transportation Research Institute(IMOB), Hasselt University, Hasselt 3500, Belgium
关键词:
交通安全 老年驾驶人 驾驶适性 功能测试 模拟驾驶
Keywords:
traffic safety elderly driver fitness-to-drive functional ability test simulated driving
分类号:
U491.254
DOI:
10.3969/j.issn.1001-0505.2021.01.023
摘要:
为应对老年驾驶人驾驶能力下降带来的交通安全问题并降低与其相关的事故风险,建立了可有效替代道路驾驶测试的老年人驾驶适性评估方法.对92名老年驾驶人进行了功能测试、模拟驾驶测试与道路驾驶测试,通过独立样本T检验与分层逐步Logistic回归确定评价指标体系,分别建立并比选了决策树、随机森林和支持向量机3种评估模型.结果表明,以对比敏感度、功能性伸展、交通标志理解以及合流变道距离等作为评价指标的支持向量机模型对驾驶适性的评估效果最好,准确率高达84.6%.该方法可以有效替代道路测试评估老年人的驾驶适性,能为其停止驾驶、调整驾驶行为、训练提升驾驶能力、使用辅助驾驶技术等提供参考.
Abstract:
To deal with the traffic safety problems caused by the decline of driving ability of elderly drivers and reduce the related crash risk, a fitness-to-drive evaluation method for the elderly drivers which can effectively replace the on-road driving test was established. Functional ability, simulated driving and on-road driving tests were carried out on 92 elderly drivers. The evaluation indicator system was determined by independent-sample T-test and hierarchical stepwise Logistic regression. Evaluation models such as decision tree, random forest and support vector machine(SVM)were respectively established and compared with each other. The results show that the SVM model with contrast sensitivity, functional reach, knowledge of road sign, and the distance of merging into traffic as evaluation indicators has the best performance, with the highest accuracy of 84.6%. The evaluation method can effectively replace the on-road driving test to evaluate the fitness-to-drive of the elderly drivers. Thus, it can provide a reference for ceasing driving, adjusting driving behavior, training and improving driving ability, or applying assisted driving technology to the elderly drivers.

参考文献/References:

[1] 伊兰. 老年驾驶员驾驶能力评价研究进展[J]. 中国老年学杂志, 2013, 33(6): 1477-1479. DOI: 10.3969/j.issn.1005-9202.2013.06.129.
Yi L. Advances in driving ability assessment of elderly drivers[J]. Chinese Journal of Gerontology, 2013, 33(6): 1477-1479. DOI:10.3969 /j.issn.1005-9202.2013.06.129. (in Chinese)
[2] Lyman S, Ferguson S A, Braver E R, et al. Older driver involvements in police reported crashes and fatal crashes: Trends and projections[J]. Injury Prevention, 2002, 8(2):116-120. DOI: 10.1136/ip.8.2.116.
[3] Piersma D, Fuermaier A B M, de Waard D, et al. Prediction of fitness to drive in patients with Alzheimer’s dementia[J]. PLoS One, 2016, 11(2): e0149566. DOI:10.1371/journal.pone.0149566.
[4] Meyers J E,Volbrecht M, Kaster-Bundgaard J. Driving is more than pedal pushing[J]. Applied Neuropsychology, 1999, 6(3): 154-164. DOI:10.1207/s15324826an0603_3.
[5] Lee H C, Cameron D, Lee A H. Assessing the driving performance of older adult drivers: On-road versus simulated driving[J].Accident Analysis & Prevention, 2003, 35(5): 797-803. DOI:10.1016/s0001-4575(02)00083-0.
[6] Waller P F. The older driver[J].Human Factors: the Journal of the Human Factors and Ergonomics Society, 1991, 33(5): 499-505. DOI:10.1177/001872089103300502.
[7] Ball K K, Roenker D L, Wadley V G, et al. Can high-risk older drivers be identified through performance-based measures in a department of motor vehicles setting?[J]. Journal of the American Geriatrics Society, 2006, 54(1): 77-84. DOI:10.1111/j.1532-5415.2005.00568.x.
[8] Haegerstrom-Portnoy G, Schneck M E, Brabyn J A. Seeing into old age: Vision function beyond acuity[J]. Optometry and Vision Science, 1999, 76(3): 141-158. DOI:10.1097/00006324-199903000-00014.
[9] 张殿业, 金键, 杨京帅. 老年人驾驶反应行为分析[J]. 交通运输工程与信息学报, 2004, 2(3): 1-5. DOI:10.3969/j.issn.1672-4747.2004.03.001.
Zhang D Y, Jin J, Yang J S. Analysis of the driving reaction behavior for aged car drivers[J].Journal of Transportation Engineering and Information, 2004, 2(3): 1-5. DOI:10.3969/j.issn.1672-4747.2004.03.001. (in Chinese)
[10] Cuenen A, Jongen E M M, Brijs T, et al. The relations between specific measures of simulated driving ability and functional ability: New insights for assessment and training programs of older drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 39: 65-78. DOI:10.1016/j.trf.2015.05.007.
[11] Carr D B. Physician’s guide to assessing and counseling older drivers[J].Annals of Emergency Medicine, 2004, 43(6): 746-747. DOI:10.1016/j.annemergmed.2004.03.024.
[12] McCarthy D P, Mann W C. Sensitivity and specificity of the assessment of driving-related skills older driver screening tool[J].Topics in Geriatric Rehabilitation, 2006, 22(2): 139-152. DOI:10.1097/00013614-200604000-00006.
[13] Korner-Bitensky N, Sofer S. The DriveABLE Competence Screen as a predictor of on-road driving in a clinical sample[J]. Australian Occupational Therapy Journal, 2009, 56(3): 200-205. DOI:10.1111/j.1440-1630.2008.00749.x.
[14] Kay L G, Bundy A C, Clemson L M. Predicting fitness to drive in people with cognitive impairments by using DriveSafe and DriveAware[J]. Archives of Physical Medicine and Rehabilitation, 2009, 90(9): 1514-1522. DOI:10.1016/j.apmr.2009.03.011.
[15] Innes C R H, Jones R D, Dalrymple-Alford J C, et al. Sensory-motor and cognitive tests predict driving ability of persons with brain disorders[J].Journal of the Neurological Sciences, 2007, 260(1/2): 188-198. DOI:10.1016/j.jns.2007.04.052.
[16] Ott B R, Davis J D,Papandonatos G D, et al. Assessment of driving-related skills prediction of unsafe driving in older adults in the office setting[J]. Journal of the American Geriatrics Society, 2013, 61(7): 1164-1169. DOI:10.1111/jgs.12306.
[17] Hoggarth P A, Innes C R H, Dalrymple-Alford J C, et al. Predicting on-road assessment pass and fail outcomes in older drivers with cognitive impairment using a battery of computerized sensory-motor and cognitive tests[J]. Journal of the American Geriatrics Society, 2013, 61(12): 2192-2198. DOI:10.1111/jgs.12540.
[18] Bowers A R,Anastasio R J, Sheldon S S, et al. Can we improve clinical prediction of at-risk older drivers?[J]. Accident Analysis & Prevention, 2013, 59: 537-547. DOI:10.1016/j.aap.2013.06.037.
[19] Calhoun V D,Pearlson G D. A selective review of simulated driving studies: Combining naturalistic and hybrid paradigms, analysis approaches, and future directions[J]. NeuroImage, 2012, 59(1): 25-35. DOI:10.1016/j.neuroimage.2011.06.037.
[20] Urlings J H J, Cuenen A, Brijs T, et al. Aiding medical professionals in fitness-to-drive screenings for elderly drivers: Development of an office-based screening tool[J]. International Psychogeriatrics, 2018, 30(8): 1211-1225. DOI:10.1017/s1041610217002678.
[21] Cohen J. A power primer[J].Psychological Bulletin, 1992, 112(1): 155-159. DOI:10.1037/0033-2909.112.1.155.
[22] 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309-319. DOI:10.3975/cagsb.2020.022501.
Li C B, Xiao K Y, Li N, et al. A comparative study of support vector machine, random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J]. Acta Geoscientica Sinica, 2020, 41(2): 309-319. DOI:10.3975/cagsb.2020.022501. (in Chinese)
[23] 郭凤香, 石晨光, 陈平, 等. 老年驾驶人有效视野测试研究[J]. 人类工效学, 2019, 25(1): 52-59. DOI:10.13837/j.issn.1006-8309.2019.01.0010.
Guo F X, Shi C G, Chen P, et al. Research on UFOV test for older drivers[J].Chinese Journal of Ergonomics, 2019, 25(1): 52-59. DOI:10.13837/j.issn.1006-8309.2019.01.0010. (in Chinese)
[24] Antin J F, Lockhart T E, Stanley L M, et al. Comparing the impairment profiles of older drivers and non-drivers: Toward the development of a fitness-to-drive model[J]. Safety Science, 2012, 50(2): 333-341. DOI:10.1016/j.ssci.2011.09.013.

相似文献/References:

[1]郭孜政,陈崇双,王欣,等.基于证据理论的驾驶行为险态识别方法[J].东南大学学报(自然科学版),2010,40(4):866.[doi:10.3969/j.issn.1001-0505.2010.04.038]
 Guo Zhizheng,Chen Chongshuang,Wang Xin,et al.Identification of risk states in driving behavior based on evidence theory[J].Journal of Southeast University (Natural Science Edition),2010,40(1):866.[doi:10.3969/j.issn.1001-0505.2010.04.038]
[2]潘福全,陆键,项乔君,等.公路信号平面交叉口安全服务水平研究[J].东南大学学报(自然科学版),2008,38(2):298.[doi:10.3969/j.issn.1001-0505.2008.02.023]
 Pan Fuquan,Lu Jian,Xiang Qiaojun,et al.Level of safety service for highway signalized intersections[J].Journal of Southeast University (Natural Science Edition),2008,38(1):298.[doi:10.3969/j.issn.1001-0505.2008.02.023]
[3]郭唐仪,Lin Xiaoli,Kracht Matthias.高速公路出口匝道事故预测模型优选及弹性分析[J].东南大学学报(自然科学版),2014,44(3):682.[doi:10.3969/j.issn.1001-0505.2014.03.041]
 Guo Tangyi,Lin Xiaoli,Kracht Matthias.Selection and elastic analysis of crash prediction models for freeway exit ramp[J].Journal of Southeast University (Natural Science Edition),2014,44(1):682.[doi:10.3969/j.issn.1001-0505.2014.03.041]
[4]潘应久,陈淑燕.改进的大型场馆看台区行人疏散时间模型[J].东南大学学报(自然科学版),2017,47(3):613.[doi:10.3969/j.issn.1001-0505.2017.03.032]
 Pan Yingjiu,Chen Shuyan.Improved model about pedestrian evacuation time in large-scale stadium audience area[J].Journal of Southeast University (Natural Science Edition),2017,47(1):613.[doi:10.3969/j.issn.1001-0505.2017.03.032]

备注/Memo

备注/Memo:
收稿日期: 2020-06-18.
作者简介: 沈永俊(1982—),男,博士,研究员,博士生导师,shenyongjun@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(71701045).
引用本文: 沈永俊,谭旭,Tom Brijs.结合功能测试与模拟驾驶的老年人驾驶适性评估[J].东南大学学报(自然科学版),2021,51(1):171-177. DOI:10.3969/j.issn.1001-0505.2021.01.023.
更新日期/Last Update: 2021-01-20