[1]陈浩,庄伟超,殷国栋,等.网联电动汽车信号灯控路口经济性驾驶策略[J].东南大学学报(自然科学版),2021,(1):178-186.[doi:10.3969/j.issn.1001-0505.2021.01.024]
 Chen Hao,Zhuang Weichao,Yin Guodong,et al.Eco-driving control strategy of connected electric vehicle at signalized intersection[J].Journal of Southeast University (Natural Science Edition),2021,(1):178-186.[doi:10.3969/j.issn.1001-0505.2021.01.024]
点击复制

网联电动汽车信号灯控路口经济性驾驶策略()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
期数:
2021年第1期
页码:
178-186
栏目:
交通运输工程
出版日期:
2021-01-20

文章信息/Info

Title:
Eco-driving control strategy of connected electric vehicle at signalized intersection
作者:
陈浩庄伟超殷国栋董昊轩
东南大学机械工程学院, 南京 210096
Author(s):
Chen Hao Zhuang Weichao Yin Guodong Dong Haoxuan
School of Mechanical Engineering, Southeast University, Nanjing 210096, China
关键词:
经济性驾驶 智能网联汽车 信号灯控路口 滚动优化 庞特里亚金极小值原理
Keywords:
eco-driving connected and autonomous vehicle(CAV) signalized intersection receding optimization Pontryagin’s minimum principle
分类号:
U461
DOI:
10.3969/j.issn.1001-0505.2021.01.024
摘要:
针对智能网联电动汽车在信号灯控路口的经济性驾驶问题,提出一种基于最优控制的经济性驾驶车速优化策略.首先,构建包含信号灯、车速限制等约束,以能量消耗最小化为目标的信号灯控路口车辆速度优化问题;然后,利用庞特里亚金极小值原理解析求解最优控制率;考虑到动态交通场景中车辆对未来交通信息的预测能力有限、信号灯约束条件多变等特点,提出了一种双层滚动距离域车速优化策略,将信号灯控路口经济性驾驶问题转化为分段最优控制问题,得到分段最优速度轨迹.仿真结果表明:在有限预测能力和无限预测能力2种情况下,所提出的经济性驾驶车速优化策略较加速—匀速—制动策略分别有9.2%和10.3%的能量节省;随着预测距离和信号灯控路口通行速度的增大,在提高通行效率的同时,能量节省效率进一步提高.
Abstract:
Aiming at the eco-driving problem of connected and autonomous electric vehicle(EV)at signalized intersection, an eco-driving speed optimization method based on optimal control was proposed. First, a vehicle speed optimization problem at signalized intersection was constructed, including traffic lights and speed limitation and other constraints, with the goal of minimizing the energy consumption. Then, the optimal control rate was solved by using Pontryagin’s minimum principle. Finally, considering the characteristics of vehicles in the dynamic traffic scenes, such as the limited ability to predict the future traffic information and the variable traffic lights constraints, a double-layer receding distance horizon velocity optimization control strategy was proposed by transforming the eco-driving problem at the signalized intersection into the segmented optimal control problem, thus obtaining the segmented optimal speed trajectory. Simulation results show that under the two conditions of finite and infinite predictive ability, the eco-driving optimization strategy has 9.2% and 10.3% energy savings compared with the accelerate-constant-brake(ACB)strategy, respectively. With the increase of the predicted distance and the speed at the signalized intersection, while improving the traffic efficiency, the energy saving efficiency is further improved.

参考文献/References:

[1] 金辉, 张俊. 智能车经济性起步车速规划研究[J]. 汽车工程, 2020, 42(2): 270-277. DOI:10.19562/j.chinasae.qcgc.2020.02.019.
Jin H, Zhang J. Research on economic speed planning of intelligent vehicle for starting stage[J].Automotive Engineering, 2020, 42(2): 270-277. DOI:10.19562/j.chinasae.qcgc.2020.02.019. (in Chinese)
[2] Vahidi A, Sciarretta A. Energy saving potentials of connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 822-843. DOI:10.1016/j.trc.2018.09.001.
[3] Liu H O, Miao C S, Zhu G G. Economic adaptive cruise control for a power split hybrid electric vehicle[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4161-4170. DOI:10.1109/tits.2019.2938923.
[4] Tajeddin S, Ekhtiari S, Faieghi M, et al. Ecological adaptive cruise control with optimal lane selection in connected vehicle environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4538-4549. DOI:10.1109/tits.2019.2938726.
[5] Asadi B, Vahidi A. Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 707-714. DOI: 10.1109/TCST.2010.2047860.
[6] Xia H, Boriboonsomsin K, Schweizer F, et al. Field operational testing of eco-approach technology at a fixed-time signalized intersection[C]// 2012 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage, AK, USA, 2012: 188-193. DOI: 10.1109/ITSC.2012.6338888.
[7] Ericsson E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J].Transportation Research Part D: Transport and Environment, 2001, 6(5): 325-345. DOI:10.1016/s1361-9209(01)00003-7.
[8] Bae S, Choi Y, Kim Y, et al. Real-time ecological velocity planning for plug-in hybrid vehicles with partial communication to traffic lights[C]// 2019 IEEE 58th Conference on Decision and Control(CDC). Nice, France, 2019: 1279-1285. DOI: 10.1109/CDC40024.2019.9030166.
[9] Asadi B, Vahidi A. Predictive use of traffic signal state for fuel saving[J]. IFAC Proceedings Volumes, 2009, 42(15): 484-489. DOI: 10.3182/20090902-3-US-2007.0064.
[10] Frank R, Castignani G, Schmitz R, et al. A novel eco-driving application to reduce energy consumption of electric vehicles[C]// 2013 International Conference on Connected Vehicles and Expo(ICCVE). Las Vegas, NV, USA, 2013: 283-288. DOI: 10.1109/ICCVE.2013.6799807.
[11] Johansson H, Farnlund J, Ergstrom C. Impact of ecodriving on emissions and fuel consumption[R]. Borlange: Swedish National Road Administration, 1999.
[12] Guler S I, Menendez M, Meier L. Using connected vehicle technology to improve the efficiency of intersections[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 121-131. DOI: 10.1016/j.trc.2014.05.008.
[13] Mahler G,Vahidi A. An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of traffic-signal timing[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2516-2523. DOI:10.1109/tits.2014.2319306.
[14] Han J H,Vahidi A, Sciarretta A. Fundamentals of energy efficient driving for combustion engine and electric vehicles: An optimal control perspective[J]. Automatica, 2019, 103: 558-572. DOI:10.1016/j.automatica.2019.02.031.
[15] Ojeda L L, Han J, Sciarretta A, et al. A real-time eco-driving strategy for automated electric vehicles[C]// 2017 IEEE 56th Annual Conference on Decision and Control(CDC). Melbourne, VIC, Australia, 2017: 2768-2774. DOI: 10.1109/CDC.2017.8264061.
[16] Kamal M A S, Mukai M, Murata J, et al. Model predictive control of vehicles on urban roads for improved fuel economy[J].IEEE Transactions on Control Systems Technology, 2013, 21(3): 831-841. DOI:10.1109/tcst.2012.2198478.
[17] Iglesias I, Isasi L, Larburu M, et al. I2V communication driving assistance system: On-board traffic light assistant[C]// 2008 IEEE 68th Vehicular Technology Conference. Calgary, BC, Canada, 2008: 1-5. DOI: 10.1109/VETECF.2008.437.
[18] Stahlmann R, Möller M, Brauer A, et al. Exploring GLOSA systems in the field: Technical evaluation and results[J]. Computer Communications, 2018, 120: 112-124. DOI: 10.1016/j.comcom.2017.12.006.
[19] Karagiannis G, Altintas O, Ekici E, et al. Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions[J]. IEEE Communications Surveys & Tutorials, 2011, 13(4): 584-616. DOI:10.1109/surv.2011.061411.00019.
[20] Sciarretta A, de Nunzio G, Ojeda L L. Optimal ecodriving control: Energy-efficient driving of road vehicles as an optimal control problem[J]. IEEE Control Systems, 2015, 35(5): 71-90. DOI:10.1109/mcs.2015.2449688.
[21] Guzzella L, Sciarretta A. Vehicle propulsion systems: Introduction to modeling and optimization[M]. Berlin: Springer, 2013: 101-126.
[22] Ozatay E, Onori S, Wollaeger J, et al. Cloud-based velocity profile optimization for everyday driving: A dynamic-programming-based solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2491-2505. DOI: 10.1109/TITS.2014.2319812.

备注/Memo

备注/Memo:
收稿日期: 2020-07-27.
作者简介: 陈浩(1995—),男,硕士生;殷国栋(联系人),男,博士,教授,博士生导师,ygd@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2016YFD0700905)、江苏省重点研发计划资助项目(BE2019004).
引用本文: 陈浩,庄伟超,殷国栋,等.网联电动汽车信号灯控路口经济性驾驶策略[J].东南大学学报(自然科学版),2021,51(1):178-186. DOI:10.3969/j.issn.1001-0505.2021.01.024.
更新日期/Last Update: 2021-01-20