[1]徐业守,徐赵东,郭迎庆,等.基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J].东南大学学报(自然科学版),2021,51(3):365-370.[doi:10.3969/j.issn.1001-0505.2021.03.001]
 Xu Yeshou,Xu Zhaodong,Guo Yingqing,et al.Mechanical behaviors of natural rubber viscoelastic materials based on molecular dynamics simulation[J].Journal of Southeast University (Natural Science Edition),2021,51(3):365-370.[doi:10.3969/j.issn.1001-0505.2021.03.001]
点击复制

基于分子动力学模拟的天然橡胶黏弹性材料力学行为()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
365-370
栏目:
土木工程
出版日期:
2021-05-20

文章信息/Info

Title:
Mechanical behaviors of natural rubber viscoelastic materials based on molecular dynamics simulation
作者:
徐业守12徐赵东12郭迎庆34黄兴淮12戴军12盖盼盼12
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 2东南大学土木工程学院, 南京 211189; 3南京林业大学机械电子工程学院, 南京 210037; 4南京东瑞减震控制工程有限公司, 南京 210033
Author(s):
Xu Yeshou12 Xu Zhaodong12 Guo Yingqing34 Huang Xinghuai12 Dai Jun12 Gai Panpan12
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
2School of Civil Engineering, Southeast University, Nanjing 211189, China
3Mechanical and Electronic Engineering School, Nanjing Forestry University, Nanjing 210037, China
4Nanjing Dongrui Damping Control Technology Co., Ltd., Nanjing 210033, China
关键词:
黏弹性材料 力学行为 分子动力学模拟 分子链聚合度 温度 加载率
Keywords:
viscoelastic material mechanical behaviours molecular dynamics simulation polymerization degree of molecular chain temperature loading rate
分类号:
TU305
DOI:
10.3969/j.issn.1001-0505.2021.03.001
摘要:
以天然橡胶为例,采用分子动力学模拟方法,研究了单轴拉伸条件下材料分子链聚合度参数p、环境温度T和加载率R对黏弹性材料力学性能的影响.结果表明,材料应力随分子链聚合度和加载率的增加而增加,随温度的升高而降低,低温高频下材料呈现出塑性特点.在R=108 s-1,T=250 K的条件下,p=20,40时,材料应力峰值分别为79.8和99.8 MPa;当p=40,R=1010 s-1时,T=100,250 K条件下,应力幅值分别为134.9和103.9 MPa;在p=40,T=250 K情况下,R=109,1010 s-1时,应力峰值分别为122.7和134.9 MPa.在加载过程中,非键结势能对系统总势能的变化起主导作用,分子动力学模拟方法可以较好地分析分子链聚合度、环境温度和加载率等参数对黏弹性材料应力、系统能量和自由体积变化的影响.
Abstract:
Taking natural rubber as an example, the effects of the material molecular chain polymerization degree p, the ambient temperature T and the loading rate R on the mechanical properties of viscoelastic materials under uniaxial tension conditions are investigated by using the molecular dynamics simulation method. The results show that the material stress increases with the increase of the polymerization degree and the loading rate, and decreases with the increase of the temperature. The material presents plastic characteristics at low temperature and high frequency. With the situation of R=108 s-1 and T=250 K, the material stress peaks are 79.8 and 99.8 MPa, respectively, when p=20, 40. As p=40, R=1010 s-1, under the conditions of T=100, 250 K, the stress amplitudes are 134.9 and 103.9 MPa, respectively. In the case of p=40, T=250 K, when R=109, 1010 s-1, the stress peaks are 122.7 and 134.9 MPa, respectively. In the loading process, the non-bonding potential energy plays a leading role in the total potential energy variation of the system. The molecular dynamics simulation method can be used to anaylze the effects of the molecular chain polymerization degree, the ambient temperature and the loading rate on the changes of the stress, the system energy and the free volume of viscoelastic materials.

参考文献/References:

[1] Xu Z D,Ge T,Liu J.Experimental and theoretical study of high-energy dissipation-viscoelastic dampers based on acrylate-rubber matrix[J].Journal of Engineering Mechanics,2020,146(6):04020057.DOI:10.1061/(asce)em.1943-7889.0001802.
[2] Parulekar Y M,Reddy G R.Passive response control systems for seismic response reduction:A state-of-the-art review[J].International Journal of Structural Stability and Dynamics,2009,9(1):151-177.DOI:10.1142/s0219455409002965.
[3] Xu Z D,Xu C,Hu J.Equivalent fractional Kelvin model and experimental study on viscoelastic damper[J].Journal of Vibration and Control,2015,21(13):2536-2552.DOI:10.1177/1077546313513604.
[4] Shi X Y,Bi W N,Zhao S G.Study on the damping of EVM based blends[J].Journal of Applied Polymer Science,2011,120(2):1121-1125.DOI:10.1002/app.33260.
[5] 吴波,郭安薪.粘弹性减震器的性能研究[J].地震工程与工程振动,1998,18(2):108-116.DOI:10.3969/j.issn.1000-1301.1998.02.014.
Wu B,Guo A X.Study on properties of viscoelastic dampers[J].Earthquake Engineering and Engineering Vibration,1998,18(2):108-116.DOI:10.3969/j.issn.1000-1301.1998.02.014. (in Chinese)
[6] Xu Z D,Liao Y X,Ge T,et al.Experimental and theoretical study of viscoelastic dampers with different matrix rubbers[J].Journal of Engineering Mechanics,2016,142(8):04016051.DOI:10.1061/(asce)em.1943-7889.0001101.
[7] Tsai C S,Lee H H.Applications of viscoelastic dampers to high-rise buildings[J].Journal of Structural Engineering,1993,119(4):1222-1233.DOI:10.1061/(asce)0733-9445(1993)119:4(1222).
[8] 徐赵东,徐超,徐业守.微振激励下黏弹性阻尼器微观链结构力学模型[J].力学学报,2016,48(3):675-683.DOI:10.6052/0459-1879-15-394.
Xu Z D,Xu C,Xu Y S.Microscopic molecular chain structure model of viscoelastic damper under micro-vibration excitations[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):675-683.DOI:10.6052/0459-1879-15-394. (in Chinese)
[9] 罗文波,谭江华.橡胶弹性材料的一种混合本构模型[J].固体力学学报,2008,29(3):277-281.
  Luo W B,Tan J H.A hybrid hyperelastic constitutive model of rubber materials[J].Chinese Journal of Solid Mechanics,2008,29(3):277-281.(in Chinese)
[10] Kitamura R,Kageyama T,Koyanagi J,et al.Estimation of biaxial tensile and compression behavior of polypropylene using molecular dynamics simulation[J].Advanced Composite Materials,2019,28(2):135-146.DOI:10.1080/09243046.2018.1469372.
[11] Payal R S,Fujimoto K,Jang C,et al.Molecular mechanism of material deformation and failure in butadiene rubber:Insight from all-atom molecular dynamics simulation using a bond breaking potential model[J].Polymer,2019,170:113-119.DOI:10.1016/j.polymer.2019.03.006.
[12] 刘国庆.天然橡胶微观接触行为与摩擦性能的MD模拟[D].青岛:青岛科技大学,2018.
  Liu G Q.Molecular dynamic simulation of microscopic contact behavior and friction properties of natural rubber[D].Qingdao:Qingdao University of Science and Technology,2015.(in Chinese)
[13] Mayo S L,Olafson B D,Goddard W A.Dreiding:A generic force field for molecular simulations[J].The Journal of Physical Chemistry,1990,94(26):8897-8909.DOI:10.1021/j100389a010.

相似文献/References:

[1]熊文,刘华,郭建,等.南京长江大桥桥面体系改造方法与力学行为分析[J].东南大学学报(自然科学版),2018,48(2):350.[doi:10.3969/j.issn.1001-0505.2018.02.025]
 Xiong Wen,Liu Hua,Guo Jian,et al.Bridge deck system reconstruction and mechanical behavior analysis of Nanjing Yangtze River Bridge[J].Journal of Southeast University (Natural Science Edition),2018,48(3):350.[doi:10.3969/j.issn.1001-0505.2018.02.025]

备注/Memo

备注/Memo:
收稿日期: 2020-12-10.
作者简介: 徐业守(1990—),男,讲师; 徐赵东(联系人),男,博士,教授,博士生导师,xzdsubmission@163.com.
基金项目: 国家重点研发计划资助项目(2016YFE0200500,2019YFE0121900)、长江学者奖励计划资助项目、科学探索奖资助项目、国家杰出青年科学基金资助项目(51625803)、国家自然科学基金资助项目(56237845)、江苏省国际合作资助项目(BZ2018058).
引用本文: 徐业守,徐赵东,郭迎庆,等.基于分子动力学模拟的天然橡胶黏弹性材料力学行为[J].东南大学学报(自然科学版),2021,51(3):365-370. DOI:10.3969/j.issn.1001-0505.2021.03.001.
更新日期/Last Update: 2021-05-20