[1]卫俊岭,王浩,茅建校,等.混凝土连续箱梁桥温度场数值模拟及实测验证[J].东南大学学报(自然科学版),2021,51(3):378-383.[doi:10.3969/j.issn.1001-0505.2021.03.003]
 Wei Junling,Wang Hao,Mao Jianxiao,et al.Numerical simulation and test verification for temperature field of concrete continuous box girder bridges[J].Journal of Southeast University (Natural Science Edition),2021,51(3):378-383.[doi:10.3969/j.issn.1001-0505.2021.03.003]
点击复制

混凝土连续箱梁桥温度场数值模拟及实测验证()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
378-383
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Numerical simulation and test verification for temperature field of concrete continuous box girder bridges
作者:
卫俊岭1王浩1茅建校1祝青鑫1王飞球2谢以顺1 2
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 211189; 2中铁二十四局集团江苏工程有限公司, 南京 210038
Author(s):
Wei Junling1 Wang Hao1 Mao Jianxiao1 Zhu Qingxin1 Wang Feiqiu2 Xie Yishun1 2
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
2Jangsu Engineer Co., Ltd., China Railway 24th Bureau Group, Nanjing 210038, China
关键词:
混凝土连续箱梁桥 温度场 数值模拟 温度梯度 实测验证
Keywords:
concrete continuous box girder bridge temperature field numerical simulation temperature gradient test verification
分类号:
U441.5
DOI:
10.3969/j.issn.1001-0505.2021.03.003
摘要:
为研究混凝土连续箱梁桥的日照温度场分布特征,以某大跨混凝土连续箱梁桥为研究对象,根据混凝土结构传热理论,结合当地气象参数与日照辐射半经验公式,采用ANSYS软件建立了混凝土箱梁桥二维瞬态日照温度场模型,模拟出晴天和阴天混凝土箱梁桥的温度场,并将模拟结果和实测结果进行对比.在此基础上,进一步模拟了混凝土箱梁桥的最大竖向温度梯度分布特征,分析了该温度分布模式对桥梁的作用效应.结果表明,混凝土箱梁桥温度场计算值与实测值吻合良好.相比于设计规范中的混凝土箱梁竖向温度梯度模式,计算拟合的竖向温度梯度对混凝土箱梁桥的应力影响更小.
Abstract:
To investigate the temperature field distribution of concrete continuous box girder bridges, according to the heat transfer theory of concrete structures, a large span continuous box girder bridge was taken as an example to establish a two-dimensional transient solar temperature field model of a concrete box girder birder using ANSYS by combining the local meteorological parameters with the solar radiation semi-empirical formulas. The temperature fields of the concrete box girder bridge on cloudless and cloudy weather were simulated. The simulation results were compared with those of the field temperature measurement. Moreover, the distribution characteristics of the maximum vertical temperature gradient of the concrete box girder bridge were simulated and the corresponding temperature effects on the bridge were analyzed. The results show that the simulated temperature field of the concrete box girder bridge agrees well with that of the temperature measurement. Compared with the vertical temperature gradient model of the concrete box girder in the code, the fitted vertical temperature gradient has lower effect on the stress of the concrete box girder bridge.

参考文献/References:

[1] Wang Y B, Zhan Y L, Zhao R D. Analysis of thermal behavior on concrete box-girder arch bridges under convection and solar radiation[J]. Advances in Structural Engineering, 2016, 19(7): 1043-1059. DOI: 10. 1177/1369433216630829.
[2] Mirambell E, Aguado A. Temperature and stress distributions in concrete box girder bridges[J].Journal of Structural Engineering, 1990, 116(9): 2388-2409. DOI: 10. 1061/(ASCE)0733-9445(1990)116: 9(2388).
[3] 薛刚, 孟煜童, 白纬宇, 等. 大跨度混凝土连续箱梁桥运营阶段的温度场分析[J]. 工程力学, 2017, 34(1): 116-121. DOI: 10.6052/j. issn. 1000-4750. 2016. 03. S016.
Xue G, Meng Y T, Bai W Y, et al.Temperature field analysis of large-span concrete continuous box-girder bridge in operation stage[J]. Engineering Mechanics, 2017, 34(1): 116-121. DOI:10.6052/j. issn. 1000-4750. 2016. 03. S016. (in Chinese)
[4] Meng Q L, Zhu J S. Fine temperature effect analysis-based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments[J]. Journal of Bridge Engineering, 2018, 23(10): 119-134. DOI: 10. 1061/(ASCE)BE. 1943-5592. 0001279.
[5] 刘永健, 刘江, 张宁, 等. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. DOI:10.15951/j. tmgcxb. 2019. 05. 006.
Liu Y J, Liu J, Zhang N, et al. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. DOI:10.15951/j. tmgcxb. 2019. 05. 006. (in Chinese)
[6] Elbadry M M, Ghali A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2355-2374. DOI: 10. 1061/(ASCE)0733-9445(1983)109: 10(2355).
[7] Clark H. Evaluation of thermal stresses in a concrete box girder bridge[D]. Seattle, WA, USA: University of Washington, 1989.
[8] 顾斌, 谢甫哲, 雷丽恒, 等. 大跨桥梁结构三维日照温度场计算方法[J]. 东南大学学报(自然科学版), 2019, 49(4): 664-671. DOI: 10.3969/j. issn. 1001-0505. 2019. 04. 008.
Gu B, Xie F Z, Lei L H, et al. Computational method for 3D sunshine temperature field of long-span bridge structures[J].Journal of Southeast University(Natural Science Edition), 2019, 49(4): 664-671. DOI:10. 3969/j. issn. 1001-0505. 2019. 04. 008. (in Chinese)
[9] Zhou L R, Xia Y, James M. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J]. Journal of Bridge Engineering, 2016, 21(1): 1-10. DOI: 10. 1061/(ASCE)BE. 1943-5592. 0000786.
[10] 凯尔别克. 太阳辐射对桥梁结构的影响[M]. 刘兴法, 等译. 北京: 中国铁道出版社, 1981: 16-46.
[11] 叶见曙, 贾琳, 钱培舒. 混凝土箱梁温度分布观测与研究[J]. 东南大学学报(自然科学版), 2002, 32(5): 788-793. DOI: 10. 3321/j. issn: 1001-0505. 2002. 05. 024.
Ye J S, Jia L, Qian P S. Observation and research on temperature distribution in concrete box girders[J].Journal of Southeast University(Science and Technology), 2002, 32(5): 788-793. DOI:10. 3321/j. issn: 1001-0505. 2002. 05. 024. (in Chinese)
[12] Lee J H, Kalkan I. Analysis of thermal environmental effects on precast prestressed concrete bridge girders: Temperature differentials and thermal deformations[J]. Advances in Structural Engineering, 2012, 15(3): 447-459. DOI: 10. 1260/1369-4332. 15. 3. 447.
[13] British Standards Institute. Eurocode l: Actions on structures—part 1-5: Thermal actions: EN1991-1-5: 2003[S]. London: British Standards Institute, 2003.
[14] Transit New Zealand. Bridge manual[S]. Wellington, New Zealand: Transit New Zealand, 2018.
[15] 国家铁路局. 铁路桥涵混凝土结构设计规范: TB 10092—2017 [S]. 北京: 中国铁道出版社, 2017.

相似文献/References:

[1]万广通,陈振乾,董卫,等.平面型热声转换装置的特性分析[J].东南大学学报(自然科学版),2012,42(2):313.[doi:10.3969/j.issn.1001-0505.2012.02.023]
 Wan Guangtong,Chen Zhenqian,Dong Wei,et al.Characteristic analysis of planar thermoacoustic transducer[J].Journal of Southeast University (Natural Science Edition),2012,42(3):313.[doi:10.3969/j.issn.1001-0505.2012.02.023]
[2]李辉,黄晓明,张久鹏,等.基于连续变温的沥青路面车辙模拟分析[J].东南大学学报(自然科学版),2007,37(5):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
 Li Hui,Huang Xiaoming,Zhang Jiupeng,et al.Simulation analysis on rutting of asphalt pavements considering consecutive temperature variation[J].Journal of Southeast University (Natural Science Edition),2007,37(3):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
[3]俞伦鹏,孙仁洽.矩形闭合空间内多孔介质中自然对流传热研究[J].东南大学学报(自然科学版),1987,17(3):94.[doi:10.3969/j.issn.1001-0505.1987.03.010]
 Yu Lunpeng (Bejing Research Institute for Metrology and Measurement)Sun Renqia (Jen-Hsia) (Department of Power Engineering).Natural Convective Heat Transfer inside the Porous Media in a Closed Rectangular Cavity[J].Journal of Southeast University (Natural Science Edition),1987,17(3):94.[doi:10.3969/j.issn.1001-0505.1987.03.010]
[4]何谷元,许季和.自然对流传热的光干涉测量术[J].东南大学学报(自然科学版),1985,15(2):36.[doi:10.3969/j.issn.1001-0505.1985.02.005]
 He Guyuan Xu Jihe.Optical Interferometry In Natural Convection Heat Transfer[J].Journal of Southeast University (Natural Science Edition),1985,15(3):36.[doi:10.3969/j.issn.1001-0505.1985.02.005]
[5]周纪瑜,徐益谦,魏启东.JS—2磁流体发电机电极的温度场与热应力的数值分析[J].东南大学学报(自然科学版),1983,13(1):47.[doi:10.3969/j.issn.1001-0505.1983.01.005]
 Zhou Ji-yu. Xu Yi-qian,and Wei Qi-dong.Numerical Analysis of Temperature Field and Stress Field for JS-2 MHD Generator Electrodes[J].Journal of Southeast University (Natural Science Edition),1983,13(3):47.[doi:10.3969/j.issn.1001-0505.1983.01.005]
[6]陈振乾,陈宇,施明恒.生物组织冻结相变过程的数值模拟[J].东南大学学报(自然科学版),2007,37(1):74.[doi:10.3969/j.issn.1001-0505.2007.01.017]
 Chen Zhenqian,Chen Yu,Shi Mingheng.Numerical simulation of freezing phase change process in biological tissue[J].Journal of Southeast University (Natural Science Edition),2007,37(3):74.[doi:10.3969/j.issn.1001-0505.2007.01.017]
[7]王武,何德坪,舒光冀.金属单向凝固过程中固—液界面前沿液相中温度梯度的确定[J].东南大学学报(自然科学版),1985,15(1):33.[doi:10.3969/j.issn.1001-0505.1985.01.003]
 Wang Wu He Deping Shu Guangji.The Determination of Temperature Gradient in Front of the Solid-Liquid Interface during Unidirectional Solidification of Metals[J].Journal of Southeast University (Natural Science Edition),1985,15(3):33.[doi:10.3969/j.issn.1001-0505.1985.01.003]
[8]崔溦,吴甲一,宋慧芳.考虑水化度对热学参数影响的早期混凝土温度场分析[J].东南大学学报(自然科学版),2015,45(4):792.[doi:10.3969/j.issn.1001-0505.2015.04.031]
 Cui Wei,Wu Jiayi,Song Huifang.Thermal field analysis of early-age concrete considering effects of degree of hydration on thermal conductivity[J].Journal of Southeast University (Natural Science Edition),2015,45(3):792.[doi:10.3969/j.issn.1001-0505.2015.04.031]
[9]汤涛,马涛,黄晓明,等.青藏高速公路宽幅路基温度场模拟分析[J].东南大学学报(自然科学版),2015,45(4):799.[doi:10.3969/j.issn.1001-0505.2015.04.032]
 Tang Tao,Ma Tao,Huang Xiaoming,et al.Simulation analysis of temperature field of wide subgrade of Qinghai-Tibet highway[J].Journal of Southeast University (Natural Science Edition),2015,45(3):799.[doi:10.3969/j.issn.1001-0505.2015.04.032]
[10]姚伟发,黄侨,张娟秀.钢-混组合梁的火灾试验及剩余承载力[J].东南大学学报(自然科学版),2016,46(2):347.[doi:10.3969/j.issn.1001-0505.2016.02.019]
 Yao Weifa,Huang Qiao,Zhang Juanxiu.Fire experiment and residual strength of steel-concrete composite girders[J].Journal of Southeast University (Natural Science Edition),2016,46(3):347.[doi:10.3969/j.issn.1001-0505.2016.02.019]

备注/Memo

备注/Memo:
收稿日期: 2020-09-06.
作者简介: 卫俊岭(1994—), 男, 硕士生; 王浩(联系人), 男, 博士, 研究员, 博士生导师, wanghao1980@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51978155)、江苏省重点研发计划(产业前瞻与共性关键技术)资助项目(BE2018120)、住房和城乡建设部2020年科学技术计划资助项目(2020-K-125).
引用本文: 卫俊岭,王浩,茅建校,等.混凝土连续箱梁桥温度场数值模拟及实测验证[J].东南大学学报(自然科学版),2021,51(3):378-383. DOI:10.3969/j.issn.1001-0505.2021.03.003.
更新日期/Last Update: 2021-05-20