[1]王路,侯康,沈锐利,等.三塔以上悬索桥关键力学行为及结构成立特征[J].东南大学学报(自然科学版),2021,51(3):391-397.[doi:10.3969/j.issn.1001-0505.2021.03.005]
 Wang Lu,Hou Kang,Shen Ruili,et al.Key mechanical behaviors and structural establishment characteristics of suspension bridge with more than three pylons[J].Journal of Southeast University (Natural Science Edition),2021,51(3):391-397.[doi:10.3969/j.issn.1001-0505.2021.03.005]
点击复制

三塔以上悬索桥关键力学行为及结构成立特征()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
391-397
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Key mechanical behaviors and structural establishment characteristics of suspension bridge with more than three pylons
作者:
王路13侯康2沈锐利3甄晓霞1
1华南理工大学土木与交通学院, 广州 510641; 2中交公路规划设计院有限公司, 北京 100088; 3西南交通大学土木工程学院, 成都 610031
Author(s):
Wang Lu13 Hou Kang2 Shen Ruili3 Zhen Xiaoxia1
1School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
2CCCC Highway Consultants Co., Ltd., Beijing 100088, China
3School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
多塔悬索桥 简化布载模式 静动力行为 结构竖向刚度 抗滑安全性 中塔纵向刚度
Keywords:
multi-pylon suspension bridge simplified loading mode static and dynamic behavior vertical stiffness of structure anti-slip safety longitudinal stiffness of mid-pylon
分类号:
U448.25
DOI:
10.3969/j.issn.1001-0505.2021.03.005
摘要:
为探究三塔以上悬索桥在不同跨径及桥塔数目时的力学行为和成立特征,建立了主跨径为500~1 500 m、桥塔数目为3~8的24个悬索桥计算模型,明确了竖向刚度及主缆抗滑的最不利简化布载模式,分析了汽车荷载和温度荷载作用、结构振型基频以及颤振临界风速,探讨了中塔纵向刚度对结构成立特征的影响.结果表明:单主跨及单侧简化满载可分别用于最不利竖向挠度及抗滑安全分析;加劲梁竖向挠度仅在桥塔数目由3增至4时存在明显跃升;抗滑安全性对桥塔数目变化不敏感,但随主跨径的增加而显著提高;加劲梁温致纵向变形较大,可通过优化塔梁约束体系加以解决;桥塔数目奇偶性影响结构正/反对称横弯的次序,主跨径增加会导致各振型基频及颤振临界风速显著减小;三塔以上悬索桥中塔效应更为突出,缆-鞍间摩擦系数取值为0.3时结构成立空间大幅增加.
Abstract:
To investigate the mechanical behaviors and establishment characteristics of suspension bridges with more than three pylons(SBMTP)for different spans and different numbers of pylons, 24 calculation models for the suspension bridge with the main span of 500 to 1 500 m and the pylon number of 3 to 8 were built. The most unfavorable simplified loading modes of the vertical stiffness and the anti-slip of the main cable were clarified. The actions of the vehicle and temperature loads, the structural modal shapes and fundamental frequencies, and the flutter critical wind speeds were analyzed. The effects of the longitudinal stiffness of the mid-pylon on the structural establishment characteristics were discussed. The results show that the most unfavorable vertical deflection and anti-slip safety can be analyzed according to the simplified full-loading on single main span and single side, respectively. The vertical deflection of the stiffening girder grows significantly only when the pylon number increases from 3 to 4.The anti-slip safety of the main cable is not sensitive to the number of the pylons, but increases significantly with the increase of the main span. The temperature-induced longitudinal deformation of the stiffening girder is large, which can be solved by optimizing the pylon-girder restraint system. The parity of the pylon number affects the order of symmetric and anti-symmetric lateral bending. Increasing the main span can reduce the fundamental frequency of each modal shape and the flutter critical wind speed. The mid-pylon effect of the SBMTP is more prominent. When the cable-saddle friction coefficient is taken as 0.3, the structural establishment scope can be significantly increased.

参考文献/References:

[1] Thai H T, Choi D H. Advanced analysis of multi-span suspension bridges[J]. Journal of Constructional Steel Research, 2013, 90: 29-41. DOI: 10.1016/j.jcsr.2013.07.015.
[2] 肖汝诚. 桥梁结构体系[M]. 北京: 人民交通出版社, 2013: 300-310.
[3] 沈锐利, 侯康, 王路. 三塔悬索桥结构竖向刚度及主缆抗滑需求[J]. 东南大学学报(自然科学版), 2019, 49(3): 474-480. DOI: 10.3969/j.issn.1001-0505.2019.03.010.
Shen R L, Hou K, Wang L. Requirements of vertical stiffness and anti-slip safety for three-pylon suspension bridge[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(3): 474-480. DOI:10.3969/j.issn.1001-0505.2019.03.010. (in Chinese)
[4] Yoshida O, Okuda M, Moriya T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Structural Engineering, 2004, 9(5): 453-463. DOI: 10.1061/(ASCE)1084-0702(2004)9:5(453).
[5] 朱本瑾. 多塔悬索桥的结构体系研究[D]. 上海: 同济大学, 2007.
  Zhu B J.Structural system research of multi-tower suspension bridge[D]. Shanghai: Tongji University, 2007.(in Chinese)
[6] 李万恒, 王元丰, 李鹏飞, 等. 三塔悬索桥桥塔适宜刚度体系研究[J]. 土木工程学报, 2017, 50(1): 75-81. DOI: 10.15951/j.tmgcxb.2017.01.010.
Li W H, Wang Y F, Li P F, et al. Rational distribution principle for the pylon stiffness of three-pylon suspension bridges[J]. China Civil Engineering Journal, 2017, 50(1):75-81. DOI:10.15951/j.tmgcxb.2017.01.010. (in Chinese)
[7] 侯康. 多塔悬索桥合理结构体系及结构适用性研究[D]. 成都: 西南交通大学, 2018.
  Hou K.Study on rational structural system and structural applicability of multi-pylon suspension bridge[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)
[8] 张清华, 李乔. 悬索桥主缆与鞍座间摩擦特性试验研究[J]. 土木工程学报, 2013, 46(4): 85-92. DOI: 10.15951/j.tmgcxb.2013.04.006.
Zhang Q H, Li Q. Study on cable-saddle frictional characteristics of long-span suspension bridges[J]. China Civil Engineering Journal, 2013, 46(4): 85-92. DOI:10.15951/j.tmgcxb.2013.04.006. (in Chinese)
[9] Zhang Q H, Cheng Z Y, Cui C, et al. Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates[J]. Journal of Bridge Engineering, 2017, 22(1): 04016103. DOI: 10.1061/(ASCE)BE.1943-5592.0000986
[10] 王路, 沈锐利, 白伦华, 等. 悬索桥主缆与索鞍间滑移行为及力学特征试验[J]. 中国公路学报, 2018, 31(9): 75-83,103.
  Wang L, Shen R L, Bai L H, et al. Test for slip behavior and mechanical characteristics between main cable and saddle in suspension bridges[J]. China Journal of Highway and Transport, 2018, 31(9): 75-83,103.(in Chinese)
[11] Wang L, Shen R L, Wang C J, et al. Theoretical and experimental studies of the antislip capacity between cable and saddle equipped with horizontal friction plates[J]. Journal of Bridge Engineering, 2019, 24(4): 04019005. DOI: 10.1061/(ASCE)BE.1943-5592.0001360.
[12] 王昌将, 马碧波. A形混凝土中塔多塔悬索桥设计与拓展应用研究[J]. 桥梁建设, 2019, 49(2): 86-91.
  Wang C J, Ma B B. Research on design and extended application of multi-tower suspension bridge with A-shaped concrete middle tower[J]. Bridge Construction, 2019, 49(2): 86-91.(in Chinese)
[13] 中华人民共和国交通运输部. 公路悬索桥设计规范 JTG/T D65-05—2015[S]. 北京: 人民交通出版社, 2015.
[14] 孟凡超. 公路桥涵设计手册:悬索桥[M]. 北京: 人民交通出版社, 2011: 570-572.
[15] 王路, 沈锐利, 王昌将, 等. 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J]. 土木工程学报, 2017, 50(12): 87-96. DOI: 10.15951/j.tmgcxb.2017.12.011.
Wang L, Shen R L, Wang C J, et al. Theoretical calculation method and formula for lateral force between main cable and cable saddle for suspension bridge[J].China Civil Engineering Journal, 2017, 50(12): 87-96. DOI:10.15951/j.tmgcxb.2017.12.011. (in Chinese)

相似文献/References:

[1]沈锐利,侯康,王路.三塔悬索桥结构竖向刚度及主缆抗滑需求[J].东南大学学报(自然科学版),2019,49(3):474.[doi:10.3969/j.issn.1001-0505.2019.03.010]
 Shen Ruili,Hou Kang,Wang Lu.Requirements of vertical stiffness and anti-slip safety for three-pylon suspension bridge[J].Journal of Southeast University (Natural Science Edition),2019,49(3):474.[doi:10.3969/j.issn.1001-0505.2019.03.010]

备注/Memo

备注/Memo:
收稿日期: 2020-12-15.
作者简介: 王路(1990—),男,博士,助理研究员;沈锐利(联系人),男,博士,教授,博士生导师,rlshen@163.com.
基金项目: 国家自然科学基金资助项目(51178396, 51678247)、中国博士后科学基金资助项目(2020M672634)、广东省基础与应用基础研究基金资助项目(2020A1515110240).
引用本文: 王路,侯康,沈锐利,等.三塔以上悬索桥关键力学行为及结构成立特征[J].东南大学学报(自然科学版),2021,51(3):391-397. DOI:10.3969/j.issn.1001-0505.2021.03.005.
更新日期/Last Update: 2021-05-20