[1]马银行,姜逸菲,刘懋,等.散斑干涉方法测定牙槽骨弹性模量[J].东南大学学报(自然科学版),2021,51(3):398-403.[doi:10.3969/j.issn.1001-0505.2021.03.006]
 Ma Yinhang,Jiang Yifei,Liu Mao,et al.Young’s modulus of alveolar bone determined by speckle interferometry[J].Journal of Southeast University (Natural Science Edition),2021,51(3):398-403.[doi:10.3969/j.issn.1001-0505.2021.03.006]
点击复制

散斑干涉方法测定牙槽骨弹性模量()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
398-403
栏目:
数学、物理学、力学
出版日期:
2021-05-20

文章信息/Info

Title:
Young’s modulus of alveolar bone determined by speckle interferometry
作者:
马银行1姜逸菲1刘懋2普盼君2严斌2杨福俊1
1东南大学江苏省力学重点实验室, 南京 211189; 2南京医科大学附属口腔医院正畸科, 南京 210029
Author(s):
Ma Yinhang1 Jiang Yifei1 Liu Mao2 Pu Panjun2 Yan Bin2 Yang Fujun1
1Jiangsu Key Laboratory of Mechanics, Southeast University, Nanjing 211189, China
2Department of Orthodontics, Stomatological Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
关键词:
牙槽骨 弹性模量 电子散斑干涉 口腔正畸
Keywords:
alveolar bone Young’s modulus electronic speckle pattern interferometry orthodontics
分类号:
O348.1
DOI:
10.3969/j.issn.1001-0505.2021.03.006
摘要:
针对牙槽骨弹性模量在认识其结构生物力学行为及在口腔正畸治疗方案中的重要作用,应用电子散斑干涉方法对牙槽骨材料的弹性模量进行了实验研究.首先为减少误差采用有限元数值模拟得到牙槽骨梁-质量球的单自由度振动模型优化尺寸,并依此利用电子散斑干涉技术对12个试样进行了共振模态测量,基于悬臂梁等效弹簧刚度模型及振动频率测量值获得了不同部位的牙槽骨在不同湿度下的弹性模量.实验结果表明:不同牙位、牙根轴向层面的牙槽骨弹性模量值存在明显差异,磨牙间的牙槽骨弹性模量明显小于前磨牙部位,根尖处牙槽骨弹性模量显著大于根中部位.测量结果与已有文献的接触测量方法获得的牙槽骨弹性模量值及分布特性相一致,证明了骨材料弹性模量的非接触散斑干涉测定技术的可行性与有效性.相比之下,该测试方法对试样约束及加载方式要求较低,具有实验操作简单、非破坏性测量、可多次重复实验的优势.
Abstract:
It is important to determine Young’s modulus of alveolar bone, for the understanding of the biomechanical behaviors of the bone structure and for the development of orthodontic treatment. The elastic modulus of alveolar bone was experimentally studied by the electronic speckle pattern interferometry(ESPI). To reduce the error in the measurement of the structure of mass-bone-beam, which is considered as a mass-spring system, the sizes of cantilevered bone beams in the structure were optimized by the finite element method. The driving frequencies of 12 alveolar-bone-beam-mass specimens under harmonic excitation were determined by the ESPI method. Young’s modulus of alveolar bone at different humid status was obtained based on the equivalent spring constant of the cantilevered-bone-beam-mass model. Experimental results show that there are significant differences in Young’s modulus of alveolar bone at different positions. Young’s modulus of alveolar bone between molars is significantly smaller than that of premolars, and that of apex is significantly larger than that of mid-root. The measurement results are consistent with the alveolar bone elastic modulus value and distribution characteristics obtained by the contact measurement method in the literature, which proves the feasibility and effectiveness of the non-contact speckle interferometry technique for the elastic modulus of bone materials. In contrast, this method has lower requirements for sample constraints and loading methods, and thus it has the advantages of simple operation, non-destructive measurement, and repeated tests.

参考文献/References:

[1] Cunningham S J, Hunt N P. Quality of life and its importance in orthodontics[J].Journal of Orthodontics, 2001, 28(2): 152-158. DOI:10.1093/ortho/28.2.152.
[2] Sarver D M. Principles of cosmetic dentistry in orthodontics: Part 1. Shape and proportionality of anterior teeth[J].American Journal of Orthodontics and Dentofacial Orthopedics, 2004, 126(6): 749-753. DOI:10.1016/j.ajodo.2004.07.034.
[3] Graber T M, Chung D D B, Aoba J T. Dentofacial orthopedics versus orthodontics[J].The Journal of the American Dental Association, 1967, 75(5): 1145-1166. DOI:10.14219/jada.archive.1967.0331.
[4] Block M S, Hoffman D R. A new device for absolute anchorage for orthodontics[J].American Journal of Orthodontics and Dentofacial Orthopedics, 1995, 107(3): 251-258. DOI:10.1016/S0889-5406(95)70140-0.
[5] Burstone C J. Variable-modulus orthodontics[J].American Journal of Orthodontics, 1981, 80(1): 1-16. DOI:10.1016/0002-9416(81)90192-5.
[6] Cornelis M A, Scheffler N R, Mahy P, et al. Modified miniplates for temporary skeletal anchorage in orthodontics: Placement and removal surgeries[J].Journal of Oral and Maxillofacial Surgery, 2008, 66(7): 1439-1445. DOI:10.1016/j.joms.2008.01.037.
[7] Scribante A, Contreras-Bulnes R, Montasser M A, et al. Orthodontics: bracket materials, adhesives systems, and their bond strength[J].BioMed Research International, 2016, 2016: 1329814. DOI:10.1155/2016/1329814.
[8] 吕渭莉,石红光.应力与牙槽骨的吸收和改建[J].口腔材料器械杂志,2003,12(2):86-88. DOI:10.3969/j.issn.1004-7565.2003.02.010.
Lü W L, Shi H G. Stress and absorption and reconstruction of alveolar bone[J].Chinese Journal of Dental Materials and Devices, 2003, 12(2): 86-88. DOI:10.3969/j.issn.1004-7565.2003.02.010. (in Chinese)
[9] Mengoni M, Ponthot J P. Isotropic continuum damage/repair model for alveolar bone remodeling[J].Journal of Computational and Applied Mathematics, 2010, 234(7): 2036-2045. DOI:10.1016/j.cam.2009.08.061.
[10] Ali A M, Newman S D S, Hooper P A, et al. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A biomechanical model using digital image correlation[J].Bone & Joint Research, 2017, 6(8): 522-529. DOI:10.1302/2046-3758.68.BJR-2017-0067.R1.
[11] 张东升.数字图像相关测量技术及其应用[J].医用生物力学,2009,24(2):85-88,93.
  Zhang D S. Digital image Correlation: Theory and applications[J].Journal of Medical Biomechanics, 2009, 24(2): 85-88,93.(in Chinese)
[12] Verhulp E, Rietbergen B V, Huiskes R. A three-dimensional digital image correlation technique for strain measurements in microstructures[J].Journal of Biomechanics, 2004, 37(9): 1313-1320. DOI:10.1016/j.jbiomech.2003.12.036.
[13] Shahar R, Zaslansky P, Barak M, et al. Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry[J].Journal of Biomechanics, 2007, 40(2): 252-264. DOI:10.1016/j.jbiomech.2006.01.021.
[14] Zaslansky P, Currey J D, Friesem A A, et al. Phase shifting speckle interferometry for determination of strain and Young’s modulus of mineralized biological materials: A study of tooth dentin compression in water[J]. Journal of Biomedical Optics, 2005, 10:0240202. DOI:10.1117/1.1891505.
[15] Martínez-Celorio R A, González-Pe�F1;a R, Cibrián R, et al. Young’s modulus measurement of the radius bone using a shearing interferometer with carrier fringes[J].Optics and Lasers in Engineering, 2010, 48(7/8): 727-731. DOI:10.1016/j.optlaseng.2010.03.001.
[16] Chan R W, Titze I R. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues[J].Annals of Biomedical Engineering, 2003, 31(4): 482-491. DOI:10.1114/1.1561287.
[17] Szarko M, Muldrew K, Bertram J E. Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage[J].BMC Musculoskeletal Disorders, 2010, 11: 231. DOI:10.1186/1471-2474-11-231.
[18] 刘延柱,陈立群,陈文良.振动力学[M].北京:高等教育出版社,2008:8-10.
[19] Wang W C, Hwang C H, Lin S Y. Vibration measurement by the time-averaged electronic speckle pattern interferometry methods[J].Applied Optics, 1996, 35(22): 4502-4509. DOI:10.1364/ao.35.004502.
[20] 马银行,蒋汉阳,戴美玲,等.基于电子散斑干涉与数字剪切散斑干涉法的悬臂薄板振动分析[J].光学学报,2019,39(4):0403001. DOI:10.3788/AOS201939.0403001.
Ma Y H, Jiang H Y, Dai M L, et al. Cantilevered plate vibration analysis based on electronic speckle pattern interferometry and digital shearing speckle pattern interferometry[J].Acta Optica Sinica, 2019, 39(4): 0403001. DOI:10.3788/AOS201939.0403001. (in Chinese)
[21] 辛鹏飞,聂璞林,王旭东,等.纳米压痕法用于人下颌骨弹性模量的测量[J].口腔颌面外科杂志,2011,21(6):398-402. DOI:10.3969/j.issn.1005-4979.2011.06.004.
Xin P F, Nie P L, Wang X D, et al. Elastic properties of human mandibule measured by nanoindentation[J].Journal of Oral and Maxillofacial Surgery, 2011, 21(6): 398-402. DOI:10.3969/j.issn.1005-4979.2011.06.004. (in Chinese)
[22] Lettry S, Seedhom B B, Berry E, et al. Quality assessment of the cortical bone of the human mandible[J].Bone, 2003, 32(1): 35-44. DOI:10.1016/S8756-3282(02)00921-3.

相似文献/References:

[1]秦鸿根,潘钢华,孙伟.掺粉煤灰高性能桥用混凝土变形性能研究[J].东南大学学报(自然科学版),2002,32(5):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
 Qin Honggen,Pan Ganghua,Sun Wei.Study on the deformation properties of the high performance concrete with fly ash used in bridge[J].Journal of Southeast University (Natural Science Edition),2002,32(3):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
[2]陈云钢,郭正兴,刘家彬,等.全封闭碳纤维与高强钢丝复合拉索的弹性模量[J].东南大学学报(自然科学版),2011,41(6):1266.[doi:10.3969/j.issn.1001-0505.2011.06.026]
 Chen Yungang,Guo Zhengxing,Liu Jiabin,et al.Elastic modulus of fully-enclosed composite cable made of CFRP and high-strength steel strand[J].Journal of Southeast University (Natural Science Edition),2011,41(3):1266.[doi:10.3969/j.issn.1001-0505.2011.06.026]
[3]樊华,宋启根.用统计连续理论研究混凝土的力学性能[J].东南大学学报(自然科学版),1996,26(6):64.[doi:10.3969/j.issn.1001-0505.1996.06.013]
 Fan Hua,Song Qigen.Study of Mechanical Properties of Concrete on the Statictical Continuum Theory[J].Journal of Southeast University (Natural Science Edition),1996,26(3):64.[doi:10.3969/j.issn.1001-0505.1996.06.013]
[4]何兆益,黄卫,邓学钧.级配碎石弹性模量的动三轴试验研究[J].东南大学学报(自然科学版),1997,27(3):36.[doi:10.3969/j.issn.1001-0505.1997.03.007]
 He Zhaoyi,Huang Wei,Deng Xuejun.Dynamic Resilient Moduli of Granular Materials[J].Journal of Southeast University (Natural Science Edition),1997,27(3):36.[doi:10.3969/j.issn.1001-0505.1997.03.007]
[5]宋启根.用有限元法探讨钢筋混凝土粘结试件[J].东南大学学报(自然科学版),1981,11(4):100.[doi:10.3969/j.issn.1001-0505.1981.04.010]
 Song Qi-gen.Study of Reinforced Concrete Bond Specimens by Finite Element Method[J].Journal of Southeast University (Natural Science Edition),1981,11(3):100.[doi:10.3969/j.issn.1001-0505.1981.04.010]
[6]丁大钧.砖石结构设计中若干问题的商榷[J].东南大学学报(自然科学版),1980,10(2):90.[doi:10.3969/j.issn.1001-0505.1980.02.010]
 Ding Da-jun.Discussions on Some Problems in the Design of Masonry Structures[J].Journal of Southeast University (Natural Science Edition),1980,10(3):90.[doi:10.3969/j.issn.1001-0505.1980.02.010]
[7]严少华,钱七虎,孙伟,等.钢纤维高强混凝土单轴压缩下应力-应变关系[J].东南大学学报(自然科学版),2001,31(2):77.[doi:10.3969/j.issn.1001-0505.2001.02.019]
 Yan Shaohua,Qian Qihu,Sun Wei,et al.Stress-Strain Relationship of High-Strength Steel Fiber Reinforced Concrete in Compression[J].Journal of Southeast University (Natural Science Edition),2001,31(3):77.[doi:10.3969/j.issn.1001-0505.2001.02.019]
[8]郭晓宇,亢景付,朱劲松.超高性能混凝土单轴受压本构关系[J].东南大学学报(自然科学版),2017,47(2):369.[doi:10.3969/j.issn.1001-0505.2017.02.028]
 Guo Xiaoyu,Kang Jingfu,Zhu Jinsong.Constitutive relationship of ultrahigh performance concrete under uni-axial compression[J].Journal of Southeast University (Natural Science Edition),2017,47(3):369.[doi:10.3969/j.issn.1001-0505.2017.02.028]
[9]柴丽娟,郭丽萍,陈波,等.冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J].东南大学学报(自然科学版),2019,49(1):76.[doi:10.3969/j.issn.1001-0505.2019.01.011]
 Chai Lijuan,Guo Liping,Chen Bo,et al.Shear performance of ecological high ductility cementitious composites under cyclic effects on freeze-thaw and carbonation[J].Journal of Southeast University (Natural Science Edition),2019,49(3):76.[doi:10.3969/j.issn.1001-0505.2019.01.011]

备注/Memo

备注/Memo:
收稿日期: 2020-11-26.
作者简介: 马银行(1993—),男,博士生;杨福俊(联系人),男,博士,教授,博士生导师,yang-fj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11772092,11472081,81571005)、江苏省重点研发计划专项基金资助项目(BE2018723).
引用本文: 马银行,姜逸菲,刘懋,等.散斑干涉方法测定牙槽骨弹性模量[J].东南大学学报(自然科学版),2021,51(3):398-403. DOI:10.3969/j.issn.1001-0505.2021.03.006.
更新日期/Last Update: 2021-05-20