[1]朱劲松,王修策,丁婧楠,等.UHPC华夫桥面单向板的荷载有效分布宽度及抗弯承载力计算方法[J].东南大学学报(自然科学版),2021,51(3):404-410.[doi:10.3969/j.issn.1001-0505.2021.03.007]
 Zhu Jinsong,Wang Xiuce,Ding Jingnan,et al.Calculation method for effective distribution width of load-distribution and flexural capacity of UHPC waffle one-way deck[J].Journal of Southeast University (Natural Science Edition),2021,51(3):404-410.[doi:10.3969/j.issn.1001-0505.2021.03.007]
点击复制

UHPC华夫桥面单向板的荷载有效分布宽度及抗弯承载力计算方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
404-410
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Calculation method for effective distribution width of load-distribution and flexural capacity of UHPC waffle one-way deck
作者:
朱劲松12王修策1丁婧楠1陈胜利1
1天津大学建筑工程学院, 天津 300072; 2天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072
Author(s):
Zhu Jinsong12 Wang Xiuce1 Ding Jingnan1 Chen Shengli1
1School of Civil Engineering, Tianjin University, Tianjin 300072, China
2Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China
关键词:
华夫桥面单向板 荷载有效分布宽度 有限元分析 抗弯承载力
Keywords:
waffle one-way deck effective load distribution width finite element analysis flexural capacity
分类号:
U443.32
DOI:
10.3969/j.issn.1001-0505.2021.03.007
摘要:
为了研究UHPC华夫桥面单向板的荷载有效分布宽度及其抗弯承载力的计算方法,采用ANSYS软件建立了41组华夫板有限元模型.通过数值分析研究了华夫桥面单向板横向跨径、纵横肋尺寸与布置、荷载作用面积及支承条件对其弹性和塑性阶段荷载有效分布宽度的影响.考虑横向跨径和横肋间距,拟合了华夫桥面单向板荷载有效分布宽度的计算公式.基于平截面假定,推导出华夫桥面单向板抗弯承载力计算的有效分布宽度法.研究结果表明,固支华夫桥面单向板的荷载有效分布宽度较简支板小30%~50%.当华夫桥面板横向跨径L、肋宽br、纵肋间距Sl、横肋间距St及车轮荷载面积a1b1满足a1<Sl-br,b1<St-br,St≤0.6L时,建议使用所提公式来计算荷载有效分布宽度,且计算结果与试验结果吻合良好.
Abstract:
To research the effective width of load-distribution and the calculation method for the bending capacities of UHPC(ultra-high-performance concrete)waffle one-way decks, 41 finite element models of waffle decks were established by ANSYS. Through numerical analysis, the effects of the transverse span, the size and arrangement of longitudinal and transverse ribs, the load area and the supporting conditions on the effective widths of load-distribution of the waffle one-way deck in the elastic and plastic stages were studied. The calculation formula of the effective width of load-distribution of the waffle one-way deck was fitted by considering the transverse span and the spacing of the transverse ribs. The effective distribution width method for the flexural capacity of the UHPC waffle one-way deck was proposed based on the plane section assumption. The results show that the effective width of the load distribution of the fixed waffle one-way deck is 30% to 50% less than that of the simply supported waffle one-way deck. When the transverse span L, the rib width br, the longitudinal rib spacing Sl, the transverse rib spacing St and the wheel load area a1b1 meet the requirements of a1<Sl-br,b1<St-br and St≤0.6L, it is suggested to calculate the effective load distribution width of waffle one-way deck by using the proposed formula. The calculation results are in good agreement with the experimental results.

参考文献/References:

[1] Alessandro K C. Biaxial behavior of ultra-high performance concrete and untreated UHPC waffle slab bridge deck design and testing [D]. Blacksburg, VA, USA: Virginia Polytechnic Institute and State University, 2013.
[2] 邵旭东,吴佳佳,刘榕,等.钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J].中国公路学报,2017,30(3):218-225,245. DOI:10.19721/j.cnki.1001-7372.2017.03.024.
Shao X D, Wu J J, Liu R, et al. Basic performance of waffle deck panel of lightweight steel-UHPC composite bridge [J].China Journal of Highway and Transportation, 2017, 30(3):218-225,245. DOI:10.19721/j.cnki.1001-7372.2017.03.024. (in Chinese)
[3] Honarvar E, Sritharan S, Matthews Rouse J, et al. Bridge decks with precast UHPC waffle panels: A field evaluation and design optimization[J].Journal of Bridge Engineering, 2016, 21(1): 04015030. DOI:10.1061/(asce)be.1943-5592.0000775.
[4] Aaleti S, Petersen B, Sritharan S. Design guide for precast UHPC waffle deck panel system, including connections[R]. Washington DC, USA: Federal Highway Administration, 2013.
[5] 卫军,黄敦文,张仕卓,等.交叉梁体系桥面板荷载有效分布宽度试验研究[J].土木工程学报,2019,52(6):92-99,109. DOI:10.15951/j.tmgcxb.2019.06.008.
Wei J, Huang D W, Zhang S Z, et al. Experimental study on effective width of load-distribution of bridge decks in a system of intersecting-beams[J]. China Civil Engineering Journal, 2019, 52(6): 92-99, 109. DOI:10.15951/j.tmgcxb.2019.06.008. (in Chinese)
[6] 赵品,荣学亮,叶见曙.波形钢腹板组合箱梁横向受力有效分布宽度研究[J].湖南大学学报(自然科学版),2016,43(7):105-110. DOI:10.16339/j.cnki.hdxbzkb.2016.07.014.
Zhao P, Rong X L, Ye J S. Research on the lateral effective width of composite box-girders with corrugated steel webs[J]. Journal of Hunan University(Natural Science), 2016, 43(7): 105-110. DOI:10.16339/j.cnki.hdxbzkb.2016.07.014. (in Chinese)
[7] 邓宗才,王义超,肖锐,等.高强钢筋UHPC梁抗弯性能试验研究与理论分析[J].应用基础与工程科学学报,2015,23(1):68-78. DOI:10.16058/j.issn.1005-0930.2015.01.006.
Deng Z C, Wang Y C, Xiao R, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1): 68-78. DOI:10.16058/j.issn.1005-0930.2015.01.006. (in Chinese)
[8] Graybeal B A.Characterization of the behavior of ultra-high performance concrete [D]. College Park, MD, USA: University of Maryland,2005.
[9] 郭晓宇,亢景付,朱劲松.超高性能混凝土单轴受压本构关系[J].东南大学学报(自然科学版),2017,47(2):369-376. DOI:10.3969/j.issn.1001-0505.2017.02.028.
Guo X Y, Kang J F, Zhu J S. Constitutive relationship of ultrahigh performance concrete under uni-axial compression [J]. Journal of Southeast University(Natural Science Edition), 2017, 47(2):369-376. DOI:10.3969/j.issn.1001-0505.2017.02.028. (in Chinese)
[10] 中华人民共和国交通运输部.公路桥涵设计通用规范:JTG D60—2015[S].北京:人民交通出版社,2015.
[11] 中华人民共和国交通运输部.公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG D62—2004[S].北京:人民交通出版社,2004.
[12] American Association of State Highway and Transportation Officials. AASHTO LRFD bridge design specifications[S]. Washington DC,USA: AASHTO, 2010.

备注/Memo

备注/Memo:
收稿日期: 2020-11-12.
作者简介: 朱劲松(1975—),男,博士,教授,博士生导师,jszhu@tju.edu.cn.
基金项目: 天津市科技支撑计划重点资助项目(16YFZCSF00460)、天津市交通运输科技发展计划资助项目(2019B-21).
引用本文: 朱劲松,王修策,丁婧楠,等.UHPC华夫桥面单向板的荷载有效分布宽度及抗弯承载力计算方法[J].东南大学学报(自然科学版),2021,51(3):404-410. DOI:10.3969/j.issn.1001-0505.2021.03.007.
更新日期/Last Update: 2021-05-20