[1]施洲,纪锋,余万庆,等.基于集对分析理论的大型沉井基础施工动态风险评估[J].东南大学学报(自然科学版),2021,51(3):419-425.[doi:10.3969/j.issn.1001-0505.2021.03.009]
 Shi Zhou,Ji Feng,Yu Wanqing,et al.Dynamic risk assessment of huge caisson foundation construction based on set pair analysis theory[J].Journal of Southeast University (Natural Science Edition),2021,51(3):419-425.[doi:10.3969/j.issn.1001-0505.2021.03.009]
点击复制

基于集对分析理论的大型沉井基础施工动态风险评估()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
419-425
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Dynamic risk assessment of huge caisson foundation construction based on set pair analysis theory
作者:
施洲1纪锋1余万庆1李冰2
1西南交通大学土木工程学院, 成都 610031; 2中国铁路上海局集团有限公司南京铁路枢纽工程建设指部, 南京 200142
Author(s):
Shi Zhou1 Ji Feng1 Yu Wanqing1 Li Bing2
1School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2Construction Headquarters of Nanjing Railway Terminal Project, China Railway Shanghai Bureau Group Co., Ltd., Nanjing 200142, China
关键词:
沉井基础 动态风险评估 监测数据 集对分析 联系数
Keywords:
caisson foundation dynamic risk assessment monitoring data set pair analysis contact number
分类号:
U447
DOI:
10.3969/j.issn.1001-0505.2021.03.009
摘要:
为研究大型桥梁沉井基础施工过程中的动态风险评估,将风险分析与施工监测相结合,提出基于监测数据的风险评估指标体系.引入集对分析理论,结合层次分析法确定的指标权重,建立以五元联系数主值为指标的动态风险评估模型,并以五峰山长江大桥大型沉井基础为例开展动态风险评估.结果表明,二级动态风险指标中,混凝土应力指数在第102天降低至-0.47,说明沉井混凝土受力复杂且开裂风险较高.下沉系数和四角高差指数在102 d后出现低值,表明沉井出现小规模滞沉、突沉等风险.一级指标中,结构应力指数及控制参数指数的低值反映了混凝土受力复杂、风险增大的实际情况.总体指数在90 d后波动显著,最低值为-0.09,说明沉井整体处于中等风险状态.
Abstract:
To study the dynamic risk assessment of large caisson foundation in large bridges during construction, a risk assessment index system was proposed by combining risk assessment with construction monitoring. A dynamic risk assessment model was established with the five-element connection main number based on the theory of set pair analysis and the index weight determined by the analytic hierarchy process method. Taking the caisson foundation of the Wufengshan Yangtze River Bridge as an example, a dynamic risk assessment was carried out. The results show that, for the secondary dynamic risk indexes, the concrete stress index decreases to -0.47 at the 102nd working day, reflecting that the stress of the caisson concrete is complex and the risk of cracking is high. The settlement coefficient index and the height difference of four-corner index after 102 d are low, exhibiting the risk of small-scale stagnant sinking and sudden sinking. For the first-level indexes, low values of the structural stress index and the control parameter index reflect the fact of the complex stress of concrete and the extra-high risk level. The overall index fluctuates significantly after 90 working days with the lowest value of -0.09, showing the middle risk status of the caisson during sinking.

参考文献/References:

[1] Abdrabbo F,Gaaver K.Challenges and uncertainties relating to open caissons[J].DFI Journal—the Journal of the Deep Foundations Institute,2012,6(1):21-32.DOI:10.1179/dfi.2012.002.
[2] 刘沐宇,陈珂,荆武.桥梁沉井基础施工风险主成分分析法[J].武汉理工大学学报(交通科学与工程版),2015,39(1):1-4.DOI:10.3963/j.issn.2095-3844.2015.01.001.
Liu M Y,Chen K,Jing W.Principal component analysis method of construction risk of open caisson foundation in a bridge[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2015,39(1):1-4.DOI:10.3963/j.issn.2095-3844.2015.01.001. (in Chinese)
[3] 邓友生,熊浩,刘荣,等.武汉鹦鹉洲长江大桥北锚碇施工变位分析[J].岩土力学,2013,34(S1):241-246.
  Deng Y S,Xiong H,Liu R,et al.Research on construction displacement of north anchorage caisson of parrot cay Yangtze River bridges in Wuhan[J].Rock and Soil Mechanics,2013,34(S1):241-246.(in Chinese)
[4] 彭仪普,屠名,程阳.超大型沉井定位着床及施工过程中的数值模拟[J].铁道科学与工程学报,2015,12(5):1179-1184.
  Peng Y P,Tu M,Cheng Y.The numerical simulation of position implantation and construction process of super large caisson[J].Journal of Railway Science and Engineering,2015,12(5):1179-1184.(in Chinese)
[5] 曹茹接.锚锭沉井基础施工过程动态模拟与安全性能评估[D].重庆:重庆交通大学,2017.
  Cao R J.Dynamic simulation and safety performance evaluation of the construction process of the anchorage caisson foundation[D].Chongqing:Chongqing Jiaotong University,2017.(in Chinese)
[6] Rafiq M I,Chryssanthopoulos M K,Sathananthan S.Bridge condition modelling and prediction using dynamic Bayesian belief networks[J].Structure and Infrastructure Engineering,2015,11(1):38-50.DOI:10.1080/15732479.2013.879319.
[7] Mortazavi S,Kheyroddin A,Naderpour H.Risk evaluation and prioritization in bridge construction projects using system dynamics approach[J].Practice Periodical on Structural Design and Construction,2020,25(3):04020015.DOI:10.1061/(ASCE)SC.1943-5576.0000493.
[8] Abdollahzadeh G,Rastgoo S.Risk assessment in bridge construction projects using fault tree and event tree analysis methods based on fuzzy logic[J].ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,Part B:Mechanical Engineering,2015,1(3):031006.DOI:10.1115/1.4030779.
[9] Salim W S W,Liew M S,Shafie A.Qualitative fault tree and event tree model of bridge defect for reinforced concrete highway bridge[C]//2014 InCIEC.Singapore:Springer,2014:639-650.DOI:10.1007/978-981-287-290-6_56.
[10] Chen T T,Wang C H.Fall risk assessment of bridge construction using Bayesian network transferring from fault tree analysis[J].Journal of Civil Engineering and Management,2017,23(2):273-282.DOI:10.3846/13923730.2015.1068841.
[11] 马远刚,刘彦峰,黄锐.深厚淤泥层大型沉井突沉机制及预警指标研究[J].桥梁建设,2019,49(S1):33-38.
  Ma Y G,Liu Y F,Huang R.Study of mechanism and early warning indexes of abrupt sinking of large open caisson in deep soft clay layers[J].Bridge Construction,2019,49(S1):33-38.(in Chinese)
[12] 蒋炳楠.沪通大桥超深大沉井下沉阻力及突沉现场监测研究[D].成都:西南交通大学,2016.
  Jiang B N.Resistance and suddenly sinking monitor research of deep and large open caisson of Hu Tong Bridge[D].Chengdu:Southwest Jiaotong University,2016.(in Chinese)
[13] 秦植海,秦鹏.高边坡稳定性评价的模糊层次与集对分析耦合模型[J].岩土工程学报,2010,32(5):706-711.
  Qin Z H,Qin P.Evaluation coupling model for high slope stability based on fuzzy analytical hierarchy process-set pair analysis method[J].Chinese Journal of Geotechnical Engineering,2010,32(5):706-711.(in Chinese)
[14] 谷月.煤矿重大事故不安全行为风险评估及预控管理研究[D].淮南:安徽理工大学,2019.
  Gu Y.Research on risk assessment and pre-control management of unsafe behaviors in major accidents in coal mines[D].Huainan:Anhui University of Science and Technology,2019.(in Chinese)
[15] 施洲,李思阳,杨仕力,等.超大型沉井基础下沉中后期摩阻力特性及突沉机制研究[J].岩石力学与工程学报,2019,38(S2):3894-3904.
  Shi Z,Li S Y,Yang S L,et al.Study on the characteristics of friction resistance and the mechanism of sudden sinking in the middle and late sinking stages of super large caisson foundation[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(S2):3894-3904.(in Chinese)

相似文献/References:

[1]朱劲松,孟庆领,祁海东,等.大型沉井基础侧壁摩阻力分布特性[J].东南大学学报(自然科学版),2019,49(6):1136.[doi:10.3969/j.issn.1001-0505.2019.06.017]
 Zhu Jinsong,Meng Qingling,Qi Haidong,et al.Distribution characteristics of side wall friction of large open caisson foundation[J].Journal of Southeast University (Natural Science Edition),2019,49(3):1136.[doi:10.3969/j.issn.1001-0505.2019.06.017]

备注/Memo

备注/Memo:
收稿日期: 2020-12-01.
作者简介: 施洲(1979—),男,博士,副教授,zshi1979@swjtu.edu.cn.
基金项目: 中国铁路总公司科技研究开发计划重大课题资助项目(2017G006-A).
引用本文: 施洲,纪锋,余万庆,等.基于集对分析理论的大型沉井基础施工动态风险评估[J].东南大学学报(自然科学版),2021,51(3):419-425. DOI:10.3969/j.issn.1001-0505.2021.03.009.
更新日期/Last Update: 2021-05-20