[1]黄强,万灵,刘干斌,等.软土隧道地铁振动效应现场实测与数值分析[J].东南大学学报(自然科学版),2021,51(3):435-441.[doi:10.3969/j.issn.1001-0505.2021.03.011]
 Huang Qiang,Wan Ling,Liu Ganbin,et al.Field measurement and numerical analysis of train-induced vibration effect on metro tunnel in soft ground[J].Journal of Southeast University (Natural Science Edition),2021,51(3):435-441.[doi:10.3969/j.issn.1001-0505.2021.03.011]
点击复制

软土隧道地铁振动效应现场实测与数值分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
435-441
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Field measurement and numerical analysis of train-induced vibration effect on metro tunnel in soft ground
作者:
黄强12万灵3刘干斌1郑荣跃12
1宁波大学土木与环境工程学院, 宁波 315211; 2宁波大学滨海城市轨道交通协同创新中心, 宁波 315211; 3江西农业大学工学院, 南昌 330045
Author(s):
Huang Qiang12 Wan Ling3 Liu Ganbin1 Zheng Rongyue12
1School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
2Collaborative Innovation Center of Coastal Urban Rail Transit, Ningbo University, Ningbo 315211, China
3College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
关键词:
现场测试 地铁振动 振动加速度 地铁振动沉降 数值计算
Keywords:
field measurement train-induced vibration vibration acceleration train-induced settlement numerical calculation
分类号:
U231.92
DOI:
10.3969/j.issn.1001-0505.2021.03.011
摘要:
为揭示列车运行软土隧道瞬时响应和长期沉降的影响,以上海地铁9号线某区间隧道为例,采用现场实测和动力有限元方法分析了软土隧道的自由场响应特征,基于经验公式法评估了隧道长期振动沉降.实测结果表明,隧道近处的地层响应以竖向振动为主,振动加速度总体上服从竖向加速度最大、横向加速度次之、纵向加速度最小的规律.隧道周围30 m范围内竖向加速度为0.02~0.32 m/s2,横向加速度为0.02~0.26 m/s2.竖向加速度在横向上以弧线状向外衰减,隧道斜上方和斜下方地层存在横向加速度放大现象,地层振动主频为0~400 Hz.地铁振动引起的土体动偏应力比小于2%,最大超孔压约为1.1 kPa.地铁运行初期隧道振动沉降主要来自土体不排水累积塑性变形,长期振动沉降则主要来自超孔压消散引起的固结沉降.研究软土地层响应特征有利于揭示地铁振动的传播过程.
Abstract:
To reveal the train-induced transient response and long-term settlement of a metro tunnel in the soft ground, by taking a tunnel section of Shanghai Metro Line 9 as an example, the free-field response characteristics of the tunnel were analyzed based on the field measurement and dynamic finite element method. The long-term settlement of the metro tunnel was evaluated by the empirical expression method. The field measurement results indicate that vertical vibration is dominant for the ground near the tunnel. The ground accelerations overall conform to the law that the vertical acceleration is the maximum followed by the transverse acceleration, and the longitudinal acceleration is the minimum. The vertical acceleration within the range of 30 m away from the tunnel is 0.02 to 0.32 m/s2, and the corresponding transversal acceleration is 0.02 to 0.26 m/s2. The vertical acceleration attenuates like a shape of arc in the transverse direction. The transversal acceleration is amplified at the upper haunch and lower haunch of the tunnel. The dominant vibration frequency of the soft ground is 0 to 400 Hz. The train-induced dynamic deviatoric stress ratio of soil is less than 2%, and the maximum excess pore water pressure is about 1.1 kPa. At the initial stage of tunnel operation, the dynamic settlement of metro tunnel mainly comes from the cumulative plastic strain of soil under undrained condition. However, in the long run, the settlement is mainly from consolidation-induced settlement due to the dissipation of the cumulated excess pore water pressure. Research on the dynamic response in the soft ground contributes to reveal the whole propagation process of the train-induced environmental vibration.

参考文献/References:

[1] Sheng X Z. A review on modelling ground vibrations generated by underground trains[J]. International Journal of Rail Transportation, 2019, 7(4): 241-261. DOI:10.1080/23248378.2019.1591312.
[2] Shen S L, Wu H N, Cui Y J, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309-323.
[3] Zou C, Wang Y M, Wang P, et al. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot[J].The Science of the Total Environment, 2015, 536: 761-773. DOI:10.1016/j.scitotenv.2015.07.123.
[4] 刘鹏辉,杨宜谦,尹京.地铁隧道内不同轨道结构振动测试与分析[J].振动与冲击,2014(2):31-36. DOI:10.13465/j.cnki.jvs.2014.02.029.
Liu P H, Yang Y Q, Yin J. Test and analysis on vibration of different track structures in tunnel[J]. Journal of Vibration and Shock, 2014(2): 31-36. DOI:10.13465/j.cnki.jvs.2014.02.029. (in Chinese)
[5] 张凌,雷晓燕,刘全民,等.地铁环境振动源强测试与评价标准分析[J].振动测试与诊断,2020(1):89-94,205. DOI: 10.16450/j.cnki.issn.1004-6801.2020.01.013.
Zhang L, Lei X Y, Liu Q M, et al. Measurement and evaluation of environmental vibration source strength of the subway[J]. Journal of Vibration,Measurement & Diagnosis, 2020(1): 89-94,205. DOI:10.16450/j.cnki.issn.1004-6801.2020.01.013. (in Chinese)
[6] Ma M, Liu W N, Qian C Y, et al. Study on the train-induced vibration impact on a history Bell Tower above two spatially overlapping metro lines[J]. Soil Dynamics and Earthquake Engineering, 2016, 81: 58-74. DOI: 10.1016/j.soildyn.2015.11.007.
[7] He C, Zhou S H, Guo P J, et al. Dynamic 2.5-D Green’s function and for a point load or point fluid source in a layered poroelastic half-space[J]. Engineering Analysis with Boundary Elements, 2017, 77: 123-137. DOI: 10.1016/j.enganabound.2017.01.013.
[8] Ma L X, Zhang C, Ouyang H J, et al. 2.5D modelling of wave propagation in longitudinally curved viscoelastic structure using a coupled FEM-PML approach[J]. Engineering Structures, 2021, 226: 11137. DOI: 10.1016/j.engstruct.2020.111337.
[9] 黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006(7):891-895.
  Huang M S, Li J J, Li X Z. Cumulative deformationbehaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006(7): 891-895.(in Chinese)
[10] 姜洲,高广运,赵宏.地铁行车速度对盾构隧道运营沉降的影响分析[J].岩土力学,2015(11):3283-3292. DOI: 10.16285/j.rsm.2015.11.033.
Jiang Z, Gao G Y, Zhao H. Influence of subway train speed on operation-induced settlement of shield tunnel[J].Rock and Soil Mechanics, 2015(11): 3283-3292. DOI:10.16285/j.rsm.2015.11.033. (in Chinese)
[11] Wu H N, Shen S L, Chai J C, et al. Evaluation of train-load-induced settlement in metro tunnels[J]. Geotechnical Engineering, 2014, 168(5): 398-406. DOI: 10.1680/geng.13.00159.
[12] Degrande G, Schevendels M, Chatterjee P, et al. Vibrations due to a test train at variable spends in a deep bored tunnel embedded in London clay[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 626-644. DOI: 10.1016/j.jsv.2005.08.039.
[13] 黄强.地铁振动荷载下饱和软土隧道自由场响应与沉降研究[D].上海:同济大学,2018.
  Huang Q. Free-field response and settlement of a metro tunnel in saturated soft ground subjected to train vibration load[D]. Shanghai: Tongji University, 2018.(in Chinese)
[14] Hussein M F M, Hunt H E M. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel[J]. Journal of Sound and Vibration, 2009, 321(1/2): 363-374. DOI: 10.1016/j.jsv.2008.09.023.
[15] Zhang F, Ye B, Noda T, et al. Explanation of cyclic mobility model of soils: Approach by stress-induced anisotropy[J]. Soils and Foundations, 2007, 47(4): 635-648. DOI:10.3208/sandf.47.635.
[16] Ye G L, Ye B. Investigation of the overconsolidation and structural behavior of Shanghai clays by element testing and constitutive modeling[J]. Underground Space, 2016, 1(1): 62-77. DOI: 10.1016/j.undsp.2016.08.001.
[17] Oka F, Yashima A, Shibata T, et al. FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J].Applied Scientific Research, 1994, 52(3): 209-245. DOI:10.1007/BF00853951.
[18] 栗润德,张鸿儒,刘维宁.地铁引起的地面振动及其对精密仪器的影响[J].岩石力学与工程学报,2008(1):206-214.
  Li R D, Zhang H R, Liu W N. Metro-induced ground vibrations and their impacts on precision instrument[J].Chinese Journal of Rock Mechanics and Engineering, 2008(1): 206-214.(in Chinese)
[19] Tang Y Q, Cui Z D, Zhang X, et al. Dynamic response and pore pressure model of the saturated soft clay around the tunnel under vibration loading of Shanghai subway[J]. Engineering Geology, 2008, 98: 126-132. DOI: 10.1016/j.enggeo.2008.01.014.
[20] 姚兆明,张明慧,陈军浩.饱和软黏土循环累积孔压模型及地铁隧道路基长期沉降计算[J].铁道学报,2012(9):87-92.
  Yao Z M, Zhang M H, Chen J H. Cyclic accumulative pore pressure explicit model of saturated soft clay and long-term settlement calculation of subway tunnel roadbed[J]. Journal of the China Railway Society, 2012(9): 87-92.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2020-10-30.
作者简介: 黄强(1987—),男,博士,讲师,qianghuang1987@163.com.
基金项目: 国家自然科学基金资助项目(52008214)、江西省自然科学基金资助项目(20202BABL214041)、宁波市自然科学基金资助项目(2019A610399)、宁波大学滨海城市轨道交通协同创新中心开放基金资助项目(2020003).
引用本文: 黄强,万灵,刘干斌,等.软土隧道地铁振动效应现场实测与数值分析[J].东南大学学报(自然科学版),2021,51(3):435-441. DOI:10.3969/j.issn.1001-0505.2021.03.011.
更新日期/Last Update: 2021-05-20