[1]李秋超,范颖芳,陈昊.新拌纳米偏高岭土水泥浆流变性[J].东南大学学报(自然科学版),2021,51(3):480-488.[doi:10.3969/j.issn.1001-0505.2021.03.017]
 Li Qiuchao,Fan Yingfang,Chen Hao.Rheological performance of fresh nano-metakaolin cement pastes[J].Journal of Southeast University (Natural Science Edition),2021,51(3):480-488.[doi:10.3969/j.issn.1001-0505.2021.03.017]
点击复制

新拌纳米偏高岭土水泥浆流变性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
480-488
栏目:
材料科学与工程
出版日期:
2021-05-20

文章信息/Info

Title:
Rheological performance of fresh nano-metakaolin cement pastes
作者:
李秋超范颖芳陈昊
大连海事大学土木工程系, 大连116026
Author(s):
Li Qiuchao Fan Yingfang Chen Hao
Department of Civil Engineering, Dalian Maritime University, Dalian 116026, China
关键词:
纳米偏高岭土 水泥浆 流变性 黏度预测 触变性
Keywords:
nano-metakaolin cement pastes rheological properties viscosity prediction thixotropy
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2021.03.017
摘要:
为了探明纳米偏高岭土(NMK)对新拌水泥浆流变性能的影响, 采用流变仪开展了水胶质量比(0.40、0.45、0.50)和减水剂(SP)影响下, 掺加不同质量分数(1%、3%、5%、10%、15%)NMK水泥浆流变试验, 得到了表观黏度、屈服应力、塑性黏度等流变参数, 探讨了NMK掺量对水泥浆流变性的影响规律; 基于修正Krieger-Dougherty模型预测了NMK水泥浆黏度; 并建立了流动参数与流变参数之间的关系. 结果表明:随NMK掺量增加,表观黏度、屈服应力和塑性黏度增大, 流动度降低; 水胶质量比0.50, 掺质量分数15% NMK水泥浆的屈服应力、塑性黏度较普通水泥浆分别增大约6倍和9倍, 流动度降低约50%. NMK导致水泥浆内部絮凝结构增加, 触变性增大. 修正Krieger-Dougherty模型所预测低掺量(质量分数<3%)NMK水泥浆黏度与试验值吻合良好; 流动度与黏度、屈服应力、塑性黏度间均存在幂函数关系.
Abstract:
To investigate the effects of nano-metakaolin(NMK)on the rheological properties of fresh cement paste, the rheological test of cement paste with various NMK contents(1%, 3%, 5%, 10%, 15%)was developed, under the effects of the water-binder ratio(0.40, 0.45, 0.50)and superplasticizer(SP)addition. The rheological parameters of NMK cement pastes such as apparent viscosity, yield stress, and plastic viscosity were obtained. The effects of NMK on rheological properties were discussed in detail. The viscosity of NMK cement pastes was predicted by the modified Krieger-Dougherty model, and the relationship between flowability and rheological parameters was established. The results show that when NMK is added, the apparent viscosity, yield stress and plastic viscosity are increased, and the fluidity decreases. When the water-binder mass ratio is 0.50 and the content of NMK is 15%, the yield stress and plastic viscosity of cement pastes are increased by 6 times and 9 times, respectively, and the fluidity decreases by about 50%. The flocculation structures and thixotropy are increased when NMK is added. The modified Krieger-Dougherty model can accurately predict the viscosity of lower contents(<3%)NMK cement pastes. The relationships between fluidity and viscosity, yield stress, plastic viscosity all obey power function.

参考文献/References:

[1] Morsy M S, Shoukry H, Mokhtar M M, et al. Facile production of nano-scale metakaolin: An investigation into its effect on compressive strength, pore structure and microstructural characteristics of mortar[J].Construction and Building Materials, 2018, 172: 243-250. DOI:10.1016/j.conbuildmat.2018.03.249.
[2] 朱绘美,宋强,张军.盐卤-干湿循环耦合作用下纳米偏高岭土改性混凝土的性能[J].硅酸盐学报,2020,48(2):237-245.DOI:10.14062/j.issn.0454-5648.20190310.
Zhu H M, Song Q, Zhang J. Properties of concrete modified by nano-metakaolin under coupled effect of salt lake brine and dry-wet cycles[J]. Journal of the Chinese Ceramic Society,2020,48(2):237-245.DOI:10.14062/j. issn.0454-5648.20190310. (in Chinese)
[3] 范颖芳, 张均良, 李秋超. 纳米偏高岭土对水泥砂浆断裂性能影响的试验研究[J]. 东南大学学报(自然科学版), 2020, 50(4): 637-644. DOI:10.3969/j.issn.1001-0505.2020.04.006.
Fan Y F, Zhang J L, Li Q C. Experimental study on the effect of nano-metakaolin on the fracture behavior of cement mortar[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(4): 637-644. DOI:10.3969/j.issn.1001-0505.2020.04.006. (in Chinese)
[4] 李秋超, 范颖芳. 几种纳米水泥砂浆氯离子渗透性对比试验研究[J]. 混凝土, 2021(2): 96-100,105.
  Li Q C, Fan Y F. Experimental study on the effect of nanomaterials on the chloride diffusion behavior of mortar[J]. Concrete, 2021(2): 96-100,105.(in Chinese)
[5] Tregger N A, Pakula M E, Shah S P. Influence of clays on the rheology of cement pastes[J].Cement and Concrete Research, 2010, 40(3): 384-391. DOI:10.1016/j.cemconres.2009.11.001.
[6] Vance K, Kumar A, Sant G, et al. The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash[J].Cement and Concrete Research, 2013, 52: 196-207. DOI:10.1016/j.cemconres.2013.07.007.
[7] Nazário Santos F, Raquel Gomes de Sousa S, José Faria Bombard A, et al. Rheological study of cement paste with metakaolin and/or limestone filler using Mixture Design of Experiments[J]. Construction and Building Materials, 2017, 143: 92-103. DOI:10.1016/j.conbuildmat.2017.03.001.
[8] Muhd Norhasri M S, Hamidah M S, Mohd Fadzil A, et al. Inclusion of nano metakaolin as additive in ultra high performance concrete(UHPC)[J]. Construction and Building Materials, 2016, 127: 167-175. DOI:10.1016/j.conbuildmat.2016.09.127.
[9] Xie J, Zhang H, Duan L, et al. Effect of nano metakaolin on compressive strength of recycled concrete[J]. Construction and Building Materials, 2020, 256: 119393. DOI:10.1016/j.conbuildmat.2020.119393.
[10] Kwan A K H, Fung W W S. Roles of water film thickness and SP dosage in rheology and cohesiveness of mortar[J]. Cement and Concrete Composites, 2012, 34(2): 121-130. DOI:10.1016/j.cemconcomp.2011.09.016.
[11] 张艳荣. 水泥-化学外加剂-水分散体系早期微结构与流变性[D]. 北京: 清华大学, 2014.
  Zhang Y R. Study on the microstructure and rheological properties of cement-chemical admixtures-water dispersion system at early stage[D]. Beijing: Tsinghua University, 2014.(in Chinese)
[12] 王立久, 谭晓倩, 曹明莉. 水泥净浆絮凝结构研究[J]. 混凝土, 2007(1): 29-31. DOI:10.3969/j.issn.1002-3550.2007.01.009.
Wang L J, Tan X Q, Cao M L. Study of cement flocculation[J]. Concrete, 2007(1): 29-31. DOI:10.3969/j.issn.1002-3550.2007.01.009. (in Chinese)
[13] 王栋民, 张力冉, 张伟利, 等. 超塑化剂对新拌水泥浆体多级絮凝结构的影响[J]. 建筑材料学报, 2012, 15(6): 755-759. DOI:10.3969/j.issn.1007-9629.2012.06.005.
Wang D M, Zhang L R, Zhang W L, et al. Effects of superplasticizers on multi-level flocculation structure of fresh cement paste[J]. Journal of Building Materials, 2012, 15(6): 755-759. DOI:10.3969/j.issn.1007-9629.2012.06.005. (in Chinese)
[14] 杨钱荣, 赵宗志, 张庆钊, 等. 若干因素对水泥砂浆流变性能的影响[J]. 建筑材料学报, 2019, 22(4): 506-515. DOI:10.3969/j.issn.1007-9629.2019.04.002.
Yang Q R, Zhao Z Z, Zhang Q Z, et al. Influence of several factors on rheological properties of cement mortar[J]. Journal of Building Materials, 2019, 22(4): 506-515. DOI:10.3969/j.issn.1007-9629.2019.04.002. (in Chinese)
[15] Wang Q, Cui X Y, Wang J, et al. Effect of fly ash on rheological properties of graphene oxide cement paste[J]. Construction and Building Materials, 2017, 138: 35-44. DOI:10.1016/j.conbuildmat.2017.01.126.
[16] Feneuil B, Pitois O, Roussel N. Effect of surfactants on the yield stress of cement paste[J]. Cement and Concrete Research, 2017, 100: 32-39. DOI:10.1016/j.cemconres.2017.04.015.
[17] Roussel N, Cussigh F. Distinct-layer casting of SCC: The mechanical consequences of thixotropy[J]. Cement and Concrete Research, 2008, 38(5): 624-632. DOI:10.1016/j.cemconres.2007.09.023.
[18] 姜骞, 谢德擎. 纳米二氧化硅透水混凝土新拌流变及硬化性能[J]. 建筑材料学报, 2019, 22(6): 866-871. DOI:10.3969/j. issn.1007-9629.2019.06.005.
Jiang Q, Xie D Q. Rheological and hardened properties of nanosilica blended pervious concrete[J]. Journal of Building Materials, 2019, 22(6): 866-871. DOI:10.3969/j.issn.1007-9629.2019.06.005. (in Chinese)
[19] 马保国, 杨虎, 谭洪波, 等. 水泥和黏土矿物对不同减水剂的吸附特性[J]. 硅酸盐学报, 2013, 41(3): 328-333. DOI:10.7521/j.issn.0454-5648.2013.03.09.
Ma B G, Yang H,Tan H B, et al. Adsorption characteristics of different superplasticizers on cement and clay minerals[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 328-333. DOI:10.7521/j.issn.0454-5648.2013.03.09. (in Chinese)
[20] Ouyang J, Tan Y Q, Corr D J, et al. Viscosity prediction of fresh cement asphalt emulsion pastes[J]. Materials and Structures, 2016, 50(1): 1-10. DOI:10.1617/s11527-016-0897-2.
[21] Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres[J]. Transactions of the Society of Rheology, 1959, 3(1): 137-152. DOI:10.1122/1.548848.
[22] Liu D M. Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction[J]. Journal of Materials Science, 2000, 35(21): 5503-5507. DOI:10.1023/A: 1004885432221.
[23] Liu D M. Theoretical determination of floc size in highly-concentrated zirconia-wax suspensions[J]. Acta Materialia, 2002, 50(8): 1927-1935. DOI:10.1016/S1359-6454(02)00031-9.

相似文献/References:

[1]范颖芳,张均良,李秋超.纳米偏高岭土对水泥砂浆断裂性能影响的试验研究[J].东南大学学报(自然科学版),2020,50(4):637.[doi:10.3969/j.issn.1001-0505.2020.04.006]
 Fan Yingfang,Zhang Junliang,Li Qiuchao.Experimental study on the effect of nano-metakaolin on the fracture behavior of cement mortar[J].Journal of Southeast University (Natural Science Edition),2020,50(3):637.[doi:10.3969/j.issn.1001-0505.2020.04.006]

备注/Memo

备注/Memo:
收稿日期: 2020-11-19.
作者简介: 李秋超(1995—), 男, 博士生;范颖芳(联系人),女,博士,教授,博士生导师,fanyf@dlmu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578099).
引用本文: 李秋超,范颖芳,陈昊.新拌纳米偏高岭土水泥浆流变性[J].东南大学学报(自然科学版),2021,51(3):480-488. DOI:10.3969/j.issn.1001-0505.2021.03.017.
更新日期/Last Update: 2021-05-20