[1]吴建涛,伍洋,刘泉,等.预处理方法对聚氨酯再生沥青混合料性能的影响[J].东南大学学报(自然科学版),2021,51(3):489-495.[doi:10.3969/j.issn.1001-0505.2021.03.018]
 Wu Jiantao,Wu Yang,Liu Quan,et al.Effect of pretreatment methods on performance of polyurethane recycling asphalt mixture[J].Journal of Southeast University (Natural Science Edition),2021,51(3):489-495.[doi:10.3969/j.issn.1001-0505.2021.03.018]
点击复制

预处理方法对聚氨酯再生沥青混合料性能的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
489-495
栏目:
交通运输工程
出版日期:
2021-05-20

文章信息/Info

Title:
Effect of pretreatment methods on performance of polyurethane recycling asphalt mixture
作者:
吴建涛1伍洋1刘泉1陆国阳2尹龙34
1 河海大学土木与交通学院, 南京 210098; 2 香港理工大学建设及环境学院, 九龙 999077; 3 江苏交通控股有限公司, 南京 210019; 4 江苏高速公路工程养护技术有限公司, 淮安 223005
Author(s):
Wu Jiantao1 Wu Yang1 Liu Quan1 Lu Guoyang2 Yin Long34
1 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2 Faculty of Construction and Environment, Hong Kong Polytechnic University, Kowloon 999077, China
3 Jiangsu Communications Holding Co., Ltd., Nanjing 210019, China
4 Jiangsu Expressway Engineering Maintenance Technology Co., Ltd., Huai’an 223005, China
关键词:
聚氨酯 RAM 预处理 PRA 劈裂强度 路用性能 可行性
Keywords:
polyurethane recycled asphalt mixtures(RAM) pretreatment polyurethane recycled asphalt(PRA) splitting strength road performance feasibility
分类号:
U414
DOI:
10.3969/j.issn.1001-0505.2021.03.018
摘要:
为研究聚氨酯应用于再生沥青混合料(RAM)的可行性,研究了聚氨酯再生沥青混合料(PRA)的强度和路用性能.对RAM进行抽提沥青、普通热拌、热拌+再生剂预处理后,经聚氨酯常温再生得到试件PRA-1、PRA-2和PRA-3;以大孔隙聚氨酯混合料(PPM)和开级配抗滑磨耗层(OGFC)为对照,测试PRA的劈裂强度、孔隙率、抗冻性、马歇尔稳定度和抗剥落性.结果表明:PRA-1的劈裂强度约1.8 MPa,马歇尔稳定度较大,但抗冻和抗剥落性低于OGFC,性能接近PPM;PRA-2受沥青影响,劈裂强度(约1.0 MPa)和马歇尔稳定度略低,抗冻和抗剥落性优于PRA-1,性能接近OGFC;PRA-3受沥青和再生剂影响,强度和稳定度过低,不具有使用意义.因此聚氨酯应用于RAM的可行性与预处理方法密切相关,其中抽提沥青和普通热拌处理方法具有一定应用意义,但不推荐在PRA中掺入再生剂.
Abstract:
To explore the feasibility of polyurethane used in recycled asphalt mixtures(RAM), the strength and road performance of polyurethane recycled asphalt(PRA)were studied. RAMs were recycled with polyurethane using three treatment methods: RAM with extracted bitumen, RAM with hot mixing treatment, and RAM with hot mixing + rejuvenator, which were named PRA-1, PRA-2, and PRA-3. They were compared with porous polyurethane mixtures(PPM)and open-graded friction course(OGFC)mixtures. Split strength, porosity, anti-freeze capacity, Marshall stability, and adhesion were measured to characterize the performance of mixtures. The results indicate that the performance of PRA-1 is close to that of PPM, which shows good Marshall stability with the split strength of 1.8 MPa. However, the anti-freeze capacity and adhesion property of PRA-1 are lower than those of OGFC. The performance of PRA-2 is close to that of OGFC. The Marshall stability and split strength(1.0 MPa)of PRA-2 are insufficient due to the asphalt, but the anti-freeze capacity and adhesion property are better than those of PRA-1. The strength and stability of PRA-3 are the worst due to asphalt and rejuvenator, which is not recommended in engineering. Therefore, the feasibility of polyurethane used in RAM is closely related to pretreatment methods. The RAM with extracted bitumen and RAM with hot mixing treatment have some application significance. However, it is not recommended to add rejuvenator to PRA.

参考文献/References:

[1] Hong F, Prozzi J A. Evaluation of recycled asphalt pavement using economic, environmental, and energy metrics based on long-term pavement performance sections[J].Road Materials and Pavement Design, 2018, 19(8): 1816-1831. DOI:10.1080/14680629.2017.1348306.
[2] Wu H J, Zhang X Y. The analysis of recovery asphalt performance in recycled asphalt mixture[J]. Applied Mechanics and Materials, 2013, 361: 1598-1603. DOI:10.4028/www.scientific.net/AMM.361-363.1598.
[3] Varma S, Jamrah A, Kutay M E, et al. A framework based on engineering performance and sustainability to assess the use of new and recycled materials in pavements[J].Road Materials and Pavement Design, 2019, 20(8): 1844-1863. DOI:10.1080/14680629.2018.1474789.
[4] 洪斌, 陆国阳, 高峻凌, 等. 路用聚氨酯胶结料的抗紫外老化性能[J]. 中国公路学报, 2020, 33(10): 240-253. DOI:10.19721/j.cnki.1001-7372.2020.10.018.
Hong B, Lu G Y, Gao J L, et al. Anti-ultraviolet aging performance of polyurethane binders used in roads[J]. China Journal of Highway and Transport, 2020, 33(10): 240-253. DOI:10.19721/j.cnki.1001-7372.2020.10.018. (in Chinese)
[5] Hong B, Xian G J, Li H. Effects of water or alkali solution immersion on the water uptake and physicomechanical properties of polyurethane[J].Polymer Engineering & Science, 2018, 58(12): 2276-2287. DOI:10.1002/pen.24848.
[6] 王火明, 李汝凯, 王秀, 等. 多孔隙聚氨酯碎石混合料强度及路用性能[J]. 中国公路学报, 2014, 27(10): 24-31. DOI:10.19721/j.cnki.1001-7372.2014.10.004.
Wang H M, Li R K, Wang X, et al. Strength and road performance for porous polyurethane mixture[J]. China Journal of Highway and Transport, 2014, 27(10): 24-31. DOI:10.19721/j.cnki.1001-7372.2014.10.004. (in Chinese)
[7] Cong L, Wang T J, Tan L, et al. Laboratory evaluation on performance of porous polyurethane mixtures and OGFC[J].Construction and Building Materials, 2018, 169: 436-442. DOI:10.1016/j.conbuildmat.2018.02.145.
[8] Lu G Y, Renken L, Li T S, et al. Experimental study on the polyurethane-bound pervious mixtures in the application of permeable pavements[J].Construction and Building Materials, 2019, 202: 838-850. DOI:10.1016/j.conbuildmat.2019.01.051.
[9] Chen J, Ma X, Wang H, et al. Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer[J].Construction and Building Materials, 2018, 161: 598-605. DOI:10.1016/j.conbuildmat.2017.11.170.
[10] Chen J, Yin X J, Wang H, et al. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement[J].Journal of Cleaner Production, 2018, 188: 12-19. DOI:10.1016/j.jclepro.2018.03.297.
[11] 李添帅, 陆国阳, 王大为, 等. 高性能聚氨酯透水混合料关键性能研究[J]. 中国公路学报, 2019, 32(4): 158-169. DOI:10.19721/j.cnki.1001-7372.2019.04.013.
Li T S, Lu G Y, Wang D W, et al. Key properties of high-performance polyurethane bounded pervious mixture[J]. China Journal of Highway and Transport, 2019, 32(4): 158-169. DOI:10.19721/j.cnki.1001-7372.2019.04.013. (in Chinese)
[12] 李汝凯, 王火明, 周刚. 多孔隙聚氨酯碎石混合料强度及影响因素试验研究[J]. 中外公路, 2015, 35(1): 244-247. DOI:10.14048/j.issn.1671-2579.2015.01.054.
[13] Obaid A, Nazzal M D, Abu Qtaish L, et al. Effect of RAP source on cracking resistance of asphalt mixtures with high RAP contents[J].Journal of Materials in Civil Engineering, 2019, 31(10): 04019213. DOI:10.1061/(asce)mt.1943-5533.0002817.
[14] 中华人民共和国交通运输部. 公路工程集料试验规程:JTG E 42—2005[S]. 北京: 人民交通出版社, 2005.
[15] 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程:JTG E20—2011[S]. 北京: 人民交通出版社, 2011.

相似文献/References:

[1]林保平.主链型联苯液晶聚氨酯的物性研究[J].东南大学学报(自然科学版),1996,26(2):97.[doi:10.3969/j.issn.1001-0505.1996.02.016]
 Lin Baoping,Onouchi Y,Okamoto H,et al.Study of Main Chain Liquid Crystalline Polyurethane Containing Biphenyl Units[J].Journal of Southeast University (Natural Science Edition),1996,26(3):97.[doi:10.3969/j.issn.1001-0505.1996.02.016]
[2]施明恒,宗祥康.聚氨酯泡沫塑料的导热系数和热老化机理[J].东南大学学报(自然科学版),1989,19(1):32.[doi:10.3969/j.issn.1001-0505.1989.01.005]
 Shi Mingheng,Zong Xiangkang.Thermal Conductivity and Aging of the Polyurethane Foam[J].Journal of Southeast University (Natural Science Edition),1989,19(3):32.[doi:10.3969/j.issn.1001-0505.1989.01.005]

备注/Memo

备注/Memo:
收稿日期: 2020-11-23.
作者简介: 吴建涛(1981—),男,博士,副教授, jiantao.wu@hhu.edu.cn.
基金项目: 国家自然科学基金资助项目(52078190)、中央高校基本科研业务费专项资金资助项目(B210202043).
引用本文: 吴建涛,伍洋,刘泉,等.预处理方法对聚氨酯再生沥青混合料性能的影响[J].东南大学学报(自然科学版),2021,51(3):489-495. DOI:10.3969/j.issn.1001-0505.2021.03.018.
更新日期/Last Update: 2021-05-20