[1]吕浩,马修卫,侯勇,等.活性炭喷射耦合布袋除尘脱除燃煤烟气有机污染物[J].东南大学学报(自然科学版),2021,51(3):503-510.[doi:10.3969/j.issn.1001-0505.2021.03.020]
 Lü Hao,Ma Xiuwei,Hou Yong,et al.Removal of coal-fired flue gas organic matter by activated carbon injection coupled with bag filter[J].Journal of Southeast University (Natural Science Edition),2021,51(3):503-510.[doi:10.3969/j.issn.1001-0505.2021.03.020]
点击复制

活性炭喷射耦合布袋除尘脱除燃煤烟气有机污染物()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
51
期数:
2021年第3期
页码:
503-510
栏目:
环境科学与工程
出版日期:
2021-05-20

文章信息/Info

Title:
Removal of coal-fired flue gas organic matter by activated carbon injection coupled with bag filter
作者:
吕浩马修卫侯勇杨林军
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Lü Hao Ma Xiuwei Hou Yong Yang Linjun
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
燃煤烟气 有机物 烟气组分 活性炭喷射 布袋除尘器
Keywords:
coal-fired flue gas organic matter gas components activated carbon injection bag filter
分类号:
X511
DOI:
10.3969/j.issn.1001-0505.2021.03.020
摘要:
为了探究燃煤烟气有机物的吸附特性,以木质活性炭作为吸附剂、邻二甲苯和甲苯作为吸附质,开展了120~130 ℃温度下有机物质量浓度为40~50 mg/m3时活性炭喷射耦合布袋除尘器(ACI+BF)脱除燃煤有机物的试验,研究了有机物沸点、极性以及模拟烟气中水汽、燃煤飞灰和SO2等组分对ACI+BF脱除有机物性能的影响.结果表明:有机物沸点是影响吸附脱除效率的主要因素,极性强弱会影响吸附速率;空气气氛下,邻二甲苯吸附脱除效率为56.68%;水汽和SO2在活性炭上与有机物产生竞争吸附,吸附脱除效率分别最大下降24.94%和6.662%,水汽的影响强于SO2;燃煤飞灰因其对活性炭的覆盖作用,低浓度时有抑制吸附作用,吸附脱除效率下降了8.58%,但随着飞灰浓度提高,因促进滤袋上滤层的产生,抑制作用减弱,吸附脱除效率下降了1.61%;水汽、燃煤飞灰和SO2三者混合组分条件下,有机物吸附脱除效率下降程度最大,吸附脱除效率仅为47.13%.
Abstract:
To study the removal characteristics of coal-fired flue gas organic matter, the wooden activated carbon was selected as adsorbents, while o-xylene and toluene were selected as adsorbates. The test for removal of organic matter by the activated carbon injection coupled with bag filter(ACI+BF)was carried out at 120-130 ℃, while the mass concentrations of organic matter was 40-50 mg/m3. The influences of the boiling point and the polarity of organic matter, the water vapor, coal-fired fly ash, and SO2 in simulated flue gas on the removal performance of the organic matter by ACI+BF were studied. The results show that the boiling point of the organic matters is the main factor affecting the removal efficiency, and the molecular polarity affects the adsorption capacity. Under air atmosphere, the removal efficiency of o-xylene is 56.68%. The water vapor and SO2 adsorb competitively with the organic matter on the activated carbon, and the removal efficiency decreases by 24.94% and 6.662%, respectively. The effect of water vapor is stronger than that of SO2. The low concentration of the fly ash inhibits the adsorption due to its coverage of activated carbon, and the removal efficiency decreases by 8.58%. However, when the concentration increases, the inhibition of the fly ash reduces due to the promotion of the formation of the filter layer on the filter bag, and the removal efficiency decreases by 1.61%. When the water vapor, the coal-fired fly ash and SO2 are mixed, the removal efficiency of organic matter decreases the most, and is only 47.13%.

参考文献/References:

[1] Zeng Y Y, Cao Y F, Qiao X, et al. Air pollution reduction in China: Recent success but great challenge for the future[J].Science of the Total Environment, 2019, 663: 329-337. DOI:10.1016/j.scitotenv.2019.01.262.
[2] Abdel-Aziz A, Frey H C. Quantification of hourly variability in NOx emissions for baseload coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2003, 53(11): 1401-1411. DOI:10.1080/10473289.2003.10466298.
[3] 王朝华. 国际新能源发展的主要趋势及对我国新能源发展的思考[J]. 经济论坛, 2011(10):84-89. DOI:10.3969/j.issn.1003-3580.2011.10.024.
Wang C H. The main trends in the development of new energy in the world and reflections on the development of new energy in my country[J]. Economic Forum, 2011(10):84-89. DOI:10.3969/j.issn.1003-3580.2011.10.024. (in Chinese)
[4] Yan Y L, Peng L, Li R M, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds(VOCs)in a thermal power station centralized area: A study in Shuozhou, China[J].Environmental Pollution, 2017, 223: 295-304. DOI:10.1016/j.envpol.2017.01.026.
[5] Cheng J, Zhang Y S, Wang T, et al. Emission of volatile organic compounds(VOCs)during coal combustion at different heating rates[J].Fuel, 2018, 225: 554-562. DOI:10.1016/j.fuel.2018.03.185.
[6] Fernández-Martínez G, López-Mahía P, Muniategui-Lorenzo S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J].Atmospheric Environment, 2001, 35(33): 5823-5831. DOI:10.1016/S1352-2310(01)00282-5.
[7] 范志威. 煤燃烧过程中有机污染物的赋存及排放特性的研究[D]. 杭州:浙江大学, 2005.
  Fan Z W. Study on forms and emissions characteristics of organic pollutants during coal combustion[D]. Hangzhou: Zhejiang University, 2005.(in Chinese)
[8] Barabad M, Jung W, Versoza M, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in Mongolia[J].International Journal of Environmental Research and Public Health, 2018, 15(8): 1706. DOI:10.3390/ijerph15081706.
[9] Chen G Y, Wang Z, Lin F W, et al. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts[J]. Journal of Hazardous Materials, 2020, 391: 122218. DOI:10.1016/j.jhazmat.2020.122218.
[10] Yan Y L, Yang C, Peng L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J].Atmospheric Environment, 2016, 143: 261-269. DOI:10.1016/j.atmosenv.2016.08.052.
[11] Rakic’ V, Rac V, Krmar M, et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J].Journal of Hazardous Materials, 2015, 282: 141-149. DOI:10.1016/j.jhazmat.2014.04.062.
[12] Xiang W, Zhang X Y, Chen K Q, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds(VOCs)[J].Chemical Engineering Journal, 2020, 385: 123842. DOI:10.1016/j.cej.2019.123842.
[13] Gil R R, Ruiz B, Lozano M S, et al. VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning[J].Chemical Engineering Journal, 2014, 245: 80-88. DOI:10.1016/j.cej.2014.02.012.
[14] 李津津, 陈扉然, 马修卫, 等. 燃煤有机污染物排放及其控制技术研究展望[J]. 化工进展, 2019,38(12): 5539-5547. DOI:10.16085/j.issn.1000-6613.2019-0380.
Li J J, Chen F R, Ma X W, et al. Emission of coal-fired VOCs and prospect of control technology[J].Chemical Industry and Engineering Progress, 2019,38(12): 5539-5547. DOI:10.16085/j.issn.1000-6613.2019-0380. (in Chinese)
[15] Cheng J, Zhang Y S, Wang T, et al. Emission of volatile organic compounds(VOCs)during coal combustion at different heating rates[J].Fuel, 2018, 225: 554-562. DOI:10.1016/j.fuel.2018.03.185.
[16] 陈永. 多孔材料制备与表征[M]. 合肥: 中国科学技术大学出版社, 2010: 3-6.
[17] 顾少轩. 材料的化学合成、制备与表征[M]. 武汉: 武汉理工大学出版社, 2016: 107-111.
[18] Guo Y Y, Li Y R, Zhu T Y, et al. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy & Fuels, 2013, 27(1): 360-366. DOI:10.1021/ef3016975.
[19] Chiang Y C, Chiang P C, Huang C P. Effects of pore structure and temperature on VOC adsorption on activated carbon[J].Carbon, 2001, 39(4): 523-534. DOI:10.1016/S0008-6223(00)00161-5.
[20] Oh K J, Park D W, Kim S S, et al. Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon[J].Korean Journal of Chemical Engineering, 2010, 27(2): 632-638. DOI:10.1007/s11814-010-0079-9.
[21] Lee S W, Cheon J K, Park H J, et al. Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene[J].Korean Journal of Chemical Engineering, 2008, 25(5): 1154-1159. DOI:10.1007/s11814-008-0190-3.
[22] Kluczka J, Pudo W, Krukiewicz K. Boron adsorption removal by commercial and modified activated carbons[J].Chemical Engineering Research and Design, 2019, 147: 30-42. DOI:10.1016/j.cherd.2019.04.021.
[23] Lashaki M J, Fayaz M, Wang H, et al. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon[J].Environmental Science & Technology, 2012, 46(7): 4083-4090. DOI:10.1021/es3000195.
[24] Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J].Carbon, 2005, 43(8): 1758-1767. DOI:10.1016/j.carbon.2005.02.023.
[25] Shi S X, Chen F, Ehlerding E B, et al. Surface engineering of graphene-based nanomaterials for biomedical applications[J].Bioconjugate Chemistry, 2014, 25(9): 1609-1619. DOI:10.1021/bc500332c.
[26] Dubinin M M. Water vapor adsorption and the microporous structures of carbonaceous adsorbents[J].Carbon, 1980, 18(5): 355-364. DOI:10.1016/0008-6223(80)90007-X.
[27] Geng Q J, Guo Q J, Yue X H. Adsorption and photocatalytic degradation kinetics of gaseous cyclohexane in an annular fluidized bed photocatalytic reactor[J].Industrial & Engineering Chemistry Research, 2010, 49(10): 4644-4652. DOI:10.1021/ie100114e.
[28] Shayegan Z, Haghighat F, Lee C S, et al. Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds[J]. Chemical Engineering Journal, 2018, 346: 578-589. DOI:10.1016/j.cej.2018.04.043.
[29] 李晖. 燃煤飞灰的改性和吸附机理研究[D]. 合肥: 中国科学技术大学, 2015.
  Li H. Modification and adsorption mechanism of coal fly ash[D]. Hefei: University of Science and Technology of China, 2015.(in Chinese)
[30] Li B, Ma C Y. Study on the mechanism of SO2 removal by activated carbon[J]. Energy Procedia, 2018, 153: 471-477. DOI:10.1016/j.egypro.2018.10.063.

相似文献/References:

[1]方华,吕锡武,朱晓超,等.黄浦江原水中有机物组成与特性[J].东南大学学报(自然科学版),2007,37(3):495.[doi:10.3969/j.issn.1001-0505.2007.03.028]
 Fang Hua,Lü Xiwu,Zhu Xiaochao,et al.Characteristics of organic matters in raw water from Huangpu River[J].Journal of Southeast University (Natural Science Edition),2007,37(3):495.[doi:10.3969/j.issn.1001-0505.2007.03.028]
[2]苗蕾,王凯,王淑莹,等.垃圾渗滤液中有机物对其厌氧氨氧化的影响[J].东南大学学报(自然科学版),2014,44(5):999.[doi:10.3969/j.issn.1001-0505.2014.05.022]
 Miao Lei,Wang Kai,Wang Shuying,et al.Effect of organics on Anammox process for treatment of landfill leachate[J].Journal of Southeast University (Natural Science Edition),2014,44(3):999.[doi:10.3969/j.issn.1001-0505.2014.05.022]

备注/Memo

备注/Memo:
收稿日期: 2020-11-16.
作者简介: 吕浩(1996—),男,硕士生;杨林军(联系人),男,博士,教授,博士生导师,ylj@seu.edu.cn.
基金项目: 国家重点研发计划资助项目(2018YFB0605200).
引用本文: 吕浩,马修卫,侯勇,等.活性炭喷射耦合布袋除尘脱除燃煤烟气有机污染物[J].东南大学学报(自然科学版),2021,51(3):503-510. DOI:10.3969/j.issn.1001-0505.2021.03.020.
更新日期/Last Update: 2021-05-20