[1]郝玉峰,王俊生,孙啸.一组混沌保密通信系统的理论探讨[J].东南大学学报(自然科学版),2000,30(3):31-35.[doi:10.3969/j.issn.1001-0505.2000.03.007]
 Hao Yufeng,Wang Junsheng,Sun Xiao.A Group of Chaotic Systems for Secure Communicaion[J].Journal of Southeast University (Natural Science Edition),2000,30(3):31-35.[doi:10.3969/j.issn.1001-0505.2000.03.007]
点击复制

一组混沌保密通信系统的理论探讨()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
30
期数:
2000年第3期
页码:
31-35
栏目:
数学、物理学、力学
出版日期:
2000-05-20

文章信息/Info

Title:
A Group of Chaotic Systems for Secure Communicaion
作者:
郝玉峰1 王俊生2 孙啸1
1 东南大学生物医学工程系,南京 210096; 2 南京电力自动化研究院,南京 210003
Author(s):
Hao Yufeng1 Wang Junsheng2 Sun Xiao1
1 Biomedical Engineering Department, Southeast University, Nanjing 210096
2 Nanjing Automation Research Institute, Nanjing 210003
关键词:
细胞神经网络(CNN) 混沌 同步 保密通信
Keywords:
cellular neural networks (CNN) chaos synchronization secure communication
分类号:
O415.5
DOI:
10.3969/j.issn.1001-0505.2000.03.007
摘要:
混沌保密通信系统是用混沌系统中的状态作为密钥信号对信息信号进行编码,从而提高信号传输时的抗破译能力.信息信号在接收端系统被恢复出来,其中的关键在于接收端与发送端混沌系统要达到同步.本文构造了保密通信系统的发送端和接收端混沌系统,将两端混沌的同步归结为一个非线性一次微分方程的初值问题,并对其同步条件进行了理论上的探讨.
Abstract:
A signal is coded by a coding key which is emerged from chaos and the security of the signal is improved. When the signal is recovered from a receiver, the key technique is to achieve synchronization between a sender and a receiver before decoding. Chaotic systems in the sender and the receiver are presented in this paper. Moreover the synchronization between the sender and the receiver is reduced to an initial value problem and conditions of synchronization is discussed theoretically. The secure method using chaotic phenomena existed in Cellular Neural Network (CNN) is explained theoretically.

参考文献/References:

[1] Ott E,Grebogi C,Yorke J A.Controlling chaos.Phys Rev Lett,1990,64(11):1196~1199
[2] Pecora L M,Carroll T L.Synchronization in chaotic system.Phys Rev Lett,1990,64(8):821~824
[3] Yang T,Wu C W,Chua L O.Cryptography based on chaotic systems.IEEE Trans on CAS,1997,44:469~472
[4] Grassi G,Mascolo S.A System theory approach for designing cryptosystems based on hyperchaos.IEEE Trans on CAS,1999,46(9):1135~1138
[5] 何振亚,张毅锋,卢宏涛.细胞神经网络动态特性及其在保密通信中的应用.通信学报,1999,20(3):59~67

相似文献/References:

[1]郝勇生,于向军,赵刚,等.基于改进粒子群算法的球磨机运行优化[J].东南大学学报(自然科学版),2008,38(3):419.[doi:10.3969/j.issn.1001-0505.2008.03.011]
 Hao Yongsheng,Yu Xiangjun,Zhao Gang,et al.Optimization for ball mill operation based on improved particle swarm optimization algorithm[J].Journal of Southeast University (Natural Science Edition),2008,38(3):419.[doi:10.3969/j.issn.1001-0505.2008.03.011]
[2]王福来,达庆利.广义Lorenz映射的混沌行为及不变密度[J].东南大学学报(自然科学版),2007,37(4):711.[doi:10.3969/j.issn.1001-0505.2007.04.033]
 Wang Fulai,Da Qingli.Chaotic behavior of generalized Lorenz maps and its invariant density[J].Journal of Southeast University (Natural Science Edition),2007,37(3):711.[doi:10.3969/j.issn.1001-0505.2007.04.033]
[3]张骥骧,达庆利.双寡头不同理性博弈模型分析[J].东南大学学报(自然科学版),2006,36(6):1029.[doi:10.3969/j.issn.1001-0505.2006.06.031]
 Zhang Jixiang,Da Qingli.Analysis of duopoly game with different rationality in oligopoly market[J].Journal of Southeast University (Natural Science Edition),2006,36(3):1029.[doi:10.3969/j.issn.1001-0505.2006.06.031]
[4]费智,杜建国.寡头垄断市场下量本利复杂性分析[J].东南大学学报(自然科学版),2005,35(3):493.[doi:10.3969/j.issn.1001-0505.2005.03.036]
 Fei Zhi,Du Jianguo.Complexity analysis about cost, sales volume and profit in duopoly[J].Journal of Southeast University (Natural Science Edition),2005,35(3):493.[doi:10.3969/j.issn.1001-0505.2005.03.036]
[5]王福来,达庆利.Lorenz映射系统中连续整数周期轨道的存在性[J].东南大学学报(自然科学版),2008,38(5):923.[doi:10.3969/j.issn.1001-0505.2008.05.035]
 Wang Fulai,Da Qingli.Consturctive periodic orbits in Lorenz maps systems[J].Journal of Southeast University (Natural Science Edition),2008,38(3):923.[doi:10.3969/j.issn.1001-0505.2008.05.035]
[6]陈阳.准熵的性质及其应用[J].东南大学学报(自然科学版),2006,36(2):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
 Chen Yang.Properties of quasi-entropy and their application[J].Journal of Southeast University (Natural Science Edition),2006,36(3):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
[7]王福来,达庆利.改进的临近返回检测法:时间序列的混沌性诊断[J].东南大学学报(自然科学版),2006,36(6):1039.[doi:10.3969/j.issn.1001-0505.2006.06.033]
 Wang Fulai,Da Qingli.Chaotic analysis of time series based on improved close returns test[J].Journal of Southeast University (Natural Science Edition),2006,36(3):1039.[doi:10.3969/j.issn.1001-0505.2006.06.033]
[8]张胜,刘红星,高敦堂,等.ANN非线性时间序列预测模型输入延时τ的确定[J].东南大学学报(自然科学版),2002,32(6):905.[doi:10.3969/j.issn.1001-0505.2002.06.017]
 Zhang Sheng,Liu Hongxing,Gao Duntang,et al.Determining the input time delay τ of a neural network for nonlinear time series prediction[J].Journal of Southeast University (Natural Science Edition),2002,32(3):905.[doi:10.3969/j.issn.1001-0505.2002.06.017]
[9]高亹,张新江,张勇.非线性转子动力学问题研究综述[J].东南大学学报(自然科学版),2002,32(3):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]
 Gao Wei,Zhang Xinjiang,Zhang Yong.Review of nonlinear rotor-dynamics[J].Journal of Southeast University (Natural Science Edition),2002,32(3):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(69702005).
第一作者:男,1974年生, 博士研究生.
更新日期/Last Update: 2000-05-20