[1]朱大奇,于盛林.电子电路故障诊断的神经网络数据融合算法[J].东南大学学报(自然科学版),2001,31(6):87-90.[doi:10.3969/j.issn.1001-0505.2001.06.021]
 Zhu Daqi,Yu Shenglin.Neural Network Data Fusion Algorithm of Circuit Fault Diagnosis[J].Journal of Southeast University (Natural Science Edition),2001,31(6):87-90.[doi:10.3969/j.issn.1001-0505.2001.06.021]
点击复制

电子电路故障诊断的神经网络数据融合算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
31
期数:
2001年第6期
页码:
87-90
栏目:
自动化
出版日期:
2001-11-20

文章信息/Info

Title:
Neural Network Data Fusion Algorithm of Circuit Fault Diagnosis
作者:
朱大奇12 于盛林1
1 南京航空航天大学测试工程系, 南京 210016; 2 安徽工业大学工业自动化系, 马鞍山 243002
Author(s):
Zhu Daqi12 Yu Shenglin1
1 Department of Testing and Measurement Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2 Industrial Automation Department, Anhui University of Science And Technology, Ma’anshan 243002, China)
关键词:
神经网络 数据融合 故障诊断
Keywords:
neural networks data fusion fault diagnosis
分类号:
TP277;TH137.3
DOI:
10.3969/j.issn.1001-0505.2001.06.021
摘要:
针对模拟电路故障元件诊断的不确定性问题,将BP网络引入数据融合之中,结合模糊集合论,构造一模糊神经网络故障分类器,并将其应用于电子电路故障诊断之中.通过测试电子电路中被诊断元件的工作温度和工作电压这2个物理量,求出两传感器对各待诊断元件的故障隶属度,利用模糊BP网络故障分类器进行数据融合,得到融合的各待诊断元件的故障隶属度,从而确定故障元件,并通过单传感器诊断结果与融合诊断结果比较,说明多传感器融合的优越性.
Abstract:
In order to solve uncertain problem of circuit fault diagnosis, a fuzzy neural network fault classifier is designed based on BP neural network and fuzzy logical theory, and it is used in fault diagnosis. By measuring the temperature and voltage of circuit components, the membership function of two sensors to circuit component is obtained and the data fusion is made by using fuzzy BP neural network classifier. Thus the fusion fault membership function of all circuit components and the fault component can be found. By comparing the diagnosis results based on separate original data and fused date, it is shown that the latter is more accurate than the former in circuit fault recognition.

参考文献/References:

[1] 朱大奇,刘文波,陈小平,等.基于虚拟仪器技术的光电雷达电子部件性能检测及故障诊断系统.航空学报,2001,22(5):468~470
[2] 罗志增.应用模糊信息融合实现目标物的分类.仪器仪表学报,1999,20(4):401~404
[3] Bogler P L.Shafer-dempster reasoning with applications to multisensor target identification system.IEEE Trans System Man and Cybernetics,1987,SMC-17:968~977
[4] 韩静,陶云刚.基于D-S证据理论和模糊数学的多传感器数据融合算法.仪器仪表学报,2000,21(6):644~647
[5] 王浩,庄钊文.模糊可靠性分析中的隶属函数确定.电子产品可靠性与环境试验,2000,10(4):2~7

相似文献/References:

[1]滕军,卢伟.基于多类型传感器信息的结构损伤识别方法[J].东南大学学报(自然科学版),2010,40(3):538.[doi:10.3969/j.issn.1001-0505.2010.03.020]
 Teng Jun,Lu Wei.Structural damage identification method based on multi-type sensors[J].Journal of Southeast University (Natural Science Edition),2010,40(6):538.[doi:10.3969/j.issn.1001-0505.2010.03.020]
[2]胡伍生,沙月进.神经网络BP算法的误差分级迭代法[J].东南大学学报(自然科学版),2003,33(3):376.[doi:10.3969/j.issn.1001-0505.2003.03.032]
 Hu Wusheng,Sha Yuejin.Error grade iterative method of BP neural networks[J].Journal of Southeast University (Natural Science Edition),2003,33(6):376.[doi:10.3969/j.issn.1001-0505.2003.03.032]
[3]陈小惠,万德钧,王庆.模糊逻辑在分布式多目标跟踪融合中的应用研究[J].东南大学学报(自然科学版),2003,33(6):754.[doi:10.3969/j.issn.1001-0505.2003.06.018]
 Chen Xiaohui,Wan Dejun,Wang Qing.Study for distributed multitarget tracking fusion using fuzzy logic[J].Journal of Southeast University (Natural Science Edition),2003,33(6):754.[doi:10.3969/j.issn.1001-0505.2003.06.018]
[4]倪富健,屠伟新,黄卫.基于神经网络技术的路面性能预估模型[J].东南大学学报(自然科学版),2000,30(5):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
 Ni Fujian,Tu Weixing,Huang Wei.Pavement Performance Forecasting Model by Using Neural Network[J].Journal of Southeast University (Natural Science Edition),2000,30(6):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
[5]窦东阳,杨建国,李丽娟,等.基于规则的神经网络在模式分类中的应用[J].东南大学学报(自然科学版),2011,41(3):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
 Dou Dongyang,Yang Jianguo,Li Lijuan,et al.Application of rule-based neural network in pattern classification[J].Journal of Southeast University (Natural Science Edition),2011,41(6):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
[6]翁永玲,田庆久,惠凤鸣.IKONOS高分辨率遥感影像自身融合效果分析[J].东南大学学报(自然科学版),2004,34(2):274.[doi:10.3969/j.issn.1001-0505.2004.02.031]
 Weng Yongling,Tian Qingjiu,Hui Fengming.Research on the fusion effects of IKONOS high-resolution remote sensing image[J].Journal of Southeast University (Natural Science Edition),2004,34(6):274.[doi:10.3969/j.issn.1001-0505.2004.02.031]
[7]董志芳,李松毅,於文雪,等.一种新的基于投影矩的三维图像配准方法[J].东南大学学报(自然科学版),2003,33(2):219.[doi:10.3969/j.issn.1001-0505.2003.02.026]
 Dong Zhifang,Li Songyi,Yu Wenxue,et al.New way of registration using the projection moment in 3-D image data[J].Journal of Southeast University (Natural Science Edition),2003,33(6):219.[doi:10.3969/j.issn.1001-0505.2003.02.026]
[8]李建,刘红星,王仲宇.前馈网络构造性设计中基于GP实现神经元激活函数类型优化[J].东南大学学报(自然科学版),2004,34(6):746.[doi:10.3969/j.issn.1001-0505.2004.06.007]
 Li Jian,Liu Hongxing,Wang Zhongyu.Optimizing neuronal activation function types based on GP in constructive FNN design[J].Journal of Southeast University (Natural Science Edition),2004,34(6):746.[doi:10.3969/j.issn.1001-0505.2004.06.007]
[9]黄清.自适应宽带稳健波束形成及神经网络算法[J].东南大学学报(自然科学版),2002,32(2):172.[doi:10.3969/j.issn.1001-0505.2002.02.005]
 Huang Qing.Robust adaptive broadband beamforming and neural network[J].Journal of Southeast University (Natural Science Edition),2002,32(6):172.[doi:10.3969/j.issn.1001-0505.2002.02.005]
[10]朱明程,徐健,李昆华.采用MCU多层神经网络模型设计探讨[J].东南大学学报(自然科学版),2000,30(2):21.[doi:10.3969/j.issn.1001-0505.2000.02.005]
 Zhu Mingcheng,Xu Jian,Li Kunhua.A Novel Model Design Adopting MCU for Multilayer Neural Network[J].Journal of Southeast University (Natural Science Edition),2000,30(6):21.[doi:10.3969/j.issn.1001-0505.2000.02.005]

备注/Memo

备注/Memo:
作者简介:朱大奇,男,1965年生,副教授,博士研究生.
基金项目:国家自然科学基金(59677021)、安徽省教委自然科学基金(2000JI174)资助项目.
更新日期/Last Update: 2001-11-20