[1]许江宁,万德钧,王庆,等.GPS姿态测量并行遗传算法快速搜索技术[J].东南大学学报(自然科学版),2002,32(3):500-505.[doi:10.3969/j.issn.1001-0505.2002.03.038]
 Xu Jiangning,Wan Dejun,Wang Qing,et al.Fast search technique of GPS attitude determination based on parallel genetic algorithms[J].Journal of Southeast University (Natural Science Edition),2002,32(3):500-505.[doi:10.3969/j.issn.1001-0505.2002.03.038]
点击复制

GPS姿态测量并行遗传算法快速搜索技术()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第3期
页码:
500-505
栏目:
其他
出版日期:
2002-05-20

文章信息/Info

Title:
Fast search technique of GPS attitude determination based on parallel genetic algorithms
作者:
许江宁1 万德钧1 王庆1 田华明2
1 东南大学仪器科学与工程系,南京 210096; 2 海军工程大学电子工程系,武汉 430033
Author(s):
Xu Jiangning1 Wan Dejun1 Wang Qing1 Tian Huaming2
1 Department of Instrument Science and Technology, Southeast University, Nanjing 210096,China
2 Department of Electricity Engineering, Navy University of Engineering, Wuhan 430033,China
关键词:
遗传算法 并行遗传算法 GPS(global positioning system) 姿态测量
Keywords:
parallel genetic algorithms AFPGA GPS(global positioning system) attitude determination
分类号:
V241.5
DOI:
10.3969/j.issn.1001-0505.2002.03.038
摘要:
提出了一种基于并行遗传算法细粒度模型和模糊度函数法的GPS姿态测量快速搜索技术(ambiguity function parallel genetic algorithms,AFPGA),它能够避开整周模糊度的求解而直接解算载体的航向和姿态.AFPGA采用个体邻域间的进化,既具备了较强的全局搜索能力,又减小了各处理器之间的数据通信量,从而保证在获得全局最优解的前提下加快姿态解算速度,并易于算法的硬件实现.运用AFPGA对一组GPS实测数据进行了100次独立搜索,得到:航向角搜索方差为0.24°,俯仰角搜索方差为0.15°; 平均搜索时间为0.6 s,成功率为100%,搜索空间为模糊度函数法的0.05%.通过对AFPGA不同的模型进行分析,并与SGA(simple genetic algorithm),AFGA(ambiguity function genetic algorithm)进行对比,结果表明AFPGA是一种更为有效的搜索技术.
Abstract:
A fast search technique for GPS attitude determination based on fine-grained parallel genetic algorithm and ambiguity function algorithm(AFPGA)is introduced. It can determine the attitude of a vehicle directly without resolving the carrier phase integer ambiguities. The individual of the population performs crossover with its immediate neighbors so that AFPGA has global searching ability and can reduce the communication expense between individuals. Therefore it achieves a fast algorithm for GPS attitude determination and provides an easy way for the hardware implementation. Using a group of GPS carrier phase experiment data for 100 trial runs, the results are: the mean square searching errors of azimuth and elevation angles are 0.24° and 0.15° respectively; the mean of searching time for each trial is 0.6 s; the searching success rate is 100%; the searching space is only 0.05% of AFM’s(ambiguity function method). Compared with different versions of AFPGA, SGA(simple genetic algorithm)and AFGA(ambiguity function genetic algorithm), the experiment results show that AFPGA is a more effective search method.

参考文献/References:

[1] Juang J,Huang G.Development of GPS-based attitude determination algorithms[J].IEEE Transaction on Aerospace and Electronic System,1997,33(3):968-976.
[2] Counselman C C,Gourevitch S A.Miniature interferometer terminals for earth surveying:ambiguity and multipath with the global positioning system[J].IEEE Transactions on Geoscience and Remote Sensing,1981,19(4):244-252.
[3] Han S,Rizos C.Improving the computational efficiency of the ambiguity algorithm[J].Journal of Geodesy,1996,70(6):330-341.
[4] Chambers L D.Practical handbook of genetic algorithms-complex coding systems volume III[M].Edinburgh:CRC Press LLC,1999.119-238.
[5] Goldberg D E.Genetic algorithms in search optimization and machine learning,Reading[M].MA:Addison-Wesley,1989.77-79.
[6] Turton B C H,Arslan T.A parallel genetic VLSI architecture for combinatorial real-time applications-disc scheduling[A].In:Proc of First IEE/IEEE International conference on Genetic Algorithms in Engineering System:Innovations and Applications[C].London,1995.493-499.
[7] Turton B C H,Arslan T.An architecture for enhancing image processing via parallel genetic algorithms & data compression[A].In: Proc of First IEE/IEEE International conference on Genetic Algorithms in Engineering System:Innovations and Applications[C].London,1995.437-442.
[8] Choi Y,Chung D.VLSI processor of parallel genetic algorithm[A].In: The Second IEEE Asia Pacific Conference on ASICs[C].HK,2000.143-146.
[9] Cantu-Paz E.A survey of parallel genetic algorithms(IIIiGAL Report No.97003)[M].Urbana I L:University of Illinois at Urbana Champaign,1997.127-132.
[10] Chen Y W.A parallel genetic algorithm for image restoration[A].In:IEEE Proc of ICPR[C].NY,1996.694-698.
[11] Manderick B,Spiessens P.Fine-grained parallel genetic algorithms[A].In:Proc of the third ICGA[C].NY,1989.428-433.

相似文献/References:

[1]黄昆鸟,陈森发,孙燕,等.一种小生境正交遗传算法研究[J].东南大学学报(自然科学版),2004,34(1):135.[doi:10.3969/j.issn.1001-0505.2004.01.032]
 Huang Kun,Chen Senfa,Sun Yan,et al.Research on a niche orthogonal genetic algorithm[J].Journal of Southeast University (Natural Science Edition),2004,34(3):135.[doi:10.3969/j.issn.1001-0505.2004.01.032]
[2]刘瑞华,刘建业,何秀凤.遗传算法在捷联惯导初始对准中的应用研究[J].东南大学学报(自然科学版),2001,31(6):60.[doi:10.3969/j.issn.1001-0505.2001.06.014]
 Liu Ruihua,Liu Jianye,He Xiufeng.Study on the Application of Genetic Algorithm in the Initial Alignment of the SINS[J].Journal of Southeast University (Natural Science Edition),2001,31(3):60.[doi:10.3969/j.issn.1001-0505.2001.06.014]
[3]王遵亮,吴新根,罗立民.基于遗传算法的肝病诊断学习系统[J].东南大学学报(自然科学版),1999,29(3):106.[doi:10.3969/j.issn.1001-0505.1999.03.020]
 Wang Zunliang,Wu Xingen,Luo Limin.A Learning System Based on Genetic Algorithms for Liver Disease Diagnosis[J].Journal of Southeast University (Natural Science Edition),1999,29(3):106.[doi:10.3969/j.issn.1001-0505.1999.03.020]
[4]於文雪,鲍旭东,罗立民,等.基于遗传算法的γ刀治疗计划优化[J].东南大学学报(自然科学版),1999,29(3):110.[doi:10.3969/j.issn.1001-0505.1999.03.021]
 Yu Wenxue,Bao Xudong,Luo Limin,et al.γ-Knife Treating Planning Optimization by Genetic Algorithm[J].Journal of Southeast University (Natural Science Edition),1999,29(3):110.[doi:10.3969/j.issn.1001-0505.1999.03.021]
[5]汪军,杨建明,徐治皋.遗传算法在汽轮机调速系统参数估计中的应用[J].东南大学学报(自然科学版),1999,29(4):141.[doi:10.3969/j.issn.1001-0505.1999.04.030]
 Wang Jun,Yang Jianming,Xu Zhigao.Steam Turbine Hydraulic Control System Parameter Estimation Using Genetic Algorithms[J].Journal of Southeast University (Natural Science Edition),1999,29(3):141.[doi:10.3969/j.issn.1001-0505.1999.04.030]
[6]窦东阳,杨建国,李丽娟,等.基于规则的神经网络在模式分类中的应用[J].东南大学学报(自然科学版),2011,41(3):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
 Dou Dongyang,Yang Jianguo,Li Lijuan,et al.Application of rule-based neural network in pattern classification[J].Journal of Southeast University (Natural Science Edition),2011,41(3):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
[7]余勇,万德钧.遗传算法在陀螺温控系统中的应用研究[J].东南大学学报(自然科学版),2000,30(2):75.[doi:10.3969/j.issn.1001-0505.2000.02.016]
 Yu Yong,Wan Dejun.Research on Application of Genetic Algorithm in Temperature Control System for Gyro[J].Journal of Southeast University (Natural Science Edition),2000,30(3):75.[doi:10.3969/j.issn.1001-0505.2000.02.016]
[8]何洁月,赵德京.一种高效的生物网络概率模体发现算法[J].东南大学学报(自然科学版),2012,42(1):35.[doi:10.3969/j.issn.1001-0505.2012.01.007]
 He Jieyue,Zhao Dejing.An efficient algorithm for discovering probability motifs in biological networks[J].Journal of Southeast University (Natural Science Edition),2012,42(3):35.[doi:10.3969/j.issn.1001-0505.2012.01.007]
[9]苏春,黄茁,许映秋.基于遗传算法和蒙特卡洛仿真的设备维修策略优化[J].东南大学学报(自然科学版),2006,36(6):941.[doi:10.3969/j.issn.1001-0505.2006.06.014]
 Su Chun,Huang Zhuo,Xu Yingqiu.Optimization of devices’ maintenance and repair policy based on genetic algorithm and Monte Carlo simulation[J].Journal of Southeast University (Natural Science Edition),2006,36(3):941.[doi:10.3969/j.issn.1001-0505.2006.06.014]
[10]黄山,蒋鹭,王天才,等.神经网络与遗传算法结合的球团竖炉燃烧优化[J].东南大学学报(自然科学版),2012,42(1):88.[doi:10.3969/j.issn.1001-0505.2012.01.017]
 Huang Shan,Jiang Lu,Wang Tiancai,et al.Optimization of combustion for pellet shaft furnace based on artificial neural network and genetic algorithm[J].Journal of Southeast University (Natural Science Edition),2012,42(3):88.[doi:10.3969/j.issn.1001-0505.2012.01.017]

备注/Memo

备注/Memo:
基金项目: 中国留学基金委员会资助项目(CSC).
作者简介: 许江宁(1964—),男,博士生,副教授; 万德钧(联系人),男,教授,博士生导师,wangdj@seu.edu.cn.
更新日期/Last Update: 2002-05-20