[1]孟军,魏同立,吴金,等.数字图像离散小波变换的原理与硬件实现分析[J].东南大学学报(自然科学版),2002,32(6):842-847.[doi:10.3969/j.issn.1001-0505.2002.06.004]
 Meng Jun,Wei Tongli,Wu Jin,et al.Principles and architectures of digital image coding with discrete wavelet transform[J].Journal of Southeast University (Natural Science Edition),2002,32(6):842-847.[doi:10.3969/j.issn.1001-0505.2002.06.004]
点击复制

数字图像离散小波变换的原理与硬件实现分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第6期
页码:
842-847
栏目:
信息与通信工程
出版日期:
2002-11-20

文章信息/Info

Title:
Principles and architectures of digital image coding with discrete wavelet transform
作者:
孟军 魏同立 吴金 常昌远
东南大学微电子中心,南京 210096
Author(s):
Meng Jun Wei Tongli Wu Jin Chang Changyuan
Microelectronics Center, Southeast University, Nanjing 210096, China
关键词:
图像编码 离散小波变换 量化
Keywords:
image coding discrete wavelet transform(DWT) quantization
分类号:
TN919.81
DOI:
10.3969/j.issn.1001-0505.2002.06.004
摘要:
针对日益进步的图像变换编码技术,对目前已经纳入MPEG-4和JPEG2000编码标准的采用离散小波变换进行数字图像编码的原理与硬件实现进行了综述介绍.在分析小波变换快速算法的基础上,重点讨论了近10年来所提出的各种离散小波变换硬件实现的典型结构,在硬件资源与处理速度两个方面进行了比较.对于变换后的系数量化,总结了几种基于嵌入式零树小波编码的算法,比较其峰值信噪比和编码时间.相较于离散余弦变换进行图像编码,采用离散小波变换在压缩效率、还原图像质量上具有更大的优越性.
Abstract:
The principles and architectures of digital image coding with discrete wavelet transform(DWT), the advanced image coding method, which is the standard method of image coding in MPEG-4 and JPEG2000, are discussed in this paper. After the introduction of DWT and fast DWT algorithm, typical architectures used to realize DWT are given concerning their hardware cost and speed. To achieve the coefficient quantization, some algorithms based on embedded zero-tree wavelet(EZW)coding are listed. Their peak signal noise rate(PSNR)and coding cycles are compared. Finally prospect for image coding is made. Compared with the discrete cosine transform(DCT), the DWT can offer more advantage in coding efficiency and decoding quality.

参考文献/References:

[1] Kunt M,Ikonomopoulos A,Kocher M.Second-generation image-coding techniques[J].Proc IEEE, 1985,73(4):549-574.
[2] Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Trans Acoust Speech Signal Processing,1989,37:2091-2110.
[3] Lewis A S,Knowles G.VLSI architecture for 2-D Daubechies wavelet transform without multipliers[J].Electronics Letters,1991,27:171-173.
[4] Chakrabarti C,Vishwanath M.Efficient realization of the discrete and continuous wavelet transforms:from single chip implementations to mappings on SIMD array computers[J].IEEE Trans Signal Processing, 1995,43:759-771.
[5] Vishwanath M,Owens R M,Irwin M J.VLSI architectures for the discrete wavelet transform[J].IEEE Trans Circuits Syst II,1995,42(5):305-316.
[6] Chakrabarti C,Vishwanath M.Architectures for wavelet transforms:a survey[J].J VLSI Signal Processing,1996,14:171-192.
[7] Wu Pocheng,Chen Lianggee.An efficient architecture for two-dimensional discrete wavelet transform[J].IEEE Trans Circuits Syst Video Technol,2001,11(4):536-545.
[8] Sweldens W.The lifting scheme:a custom-design construction of biorthogonal wavelets[J].Appl Comput Harmon Anal,1996,3(2):186-200.
[9] Lin Chengjiang,Zhang Bo,Zheng Yuan F.Packed integer wavelet transform constructed by lifting scheme[J].IEEE Trans Circuits Syst Video Technol,2000,10(8):1496-1501.
[10] Shapiro J.Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Trans Signal Processing,1993,41(12):3445-3462.
[11] Said A,Pearlman W A.A new fast and efficient image CODEC based on set partitioning in hierarchical trees[J].IEEE Trans Circuits Syst Video Technol,1996,6(6):243-250.
[12] 王向阳,杨红颖.基于多阈值与嵌入零树小波的图像压缩算法[J].通信学报,2001,22(12):88-93.
  Wang Xiangyang,Yang Hongying.Image compression based on multi-threshold and embedded zerotree wavelet[J].Journal of China Institute of Communications,2001,22(12):88-93.(in Chinese)
[13] Cappello P R,Davison G A,Gersho A.Systolic architecture for vector quantization[J].IEEE Trans Acoust Speech Signal Processing,1988,36(10):1651-1664.
[14] Kim D S.Minimum-distance classified vector quantizer and its systolic array architecture[J].J Korea Inst Tele Electron,1995,32(5):77-86.
[15] Paek Seung-Kwon,Kim Lee-Sup.A real-time wavelet vector quantization algorithm and its VLSI architecture[J]. IEEE Trans Circuits Syst Video Technol,2000,10(3).
[16] 郑勇,周正华,朱维乐.基于树结构矢量分类的小波图像网络编码矢量量化[J].通信学报,2001,22(9):108-114.
  Zheng Yong,Zhou Zhenghua,Zhu Weile.Trellis coded vector quantization of wavelet image using tree structure vector combination and classification[J].Journal of China Institute of Communications,2001,22(9):108-114.(in Chinese)

备注/Memo

备注/Memo:
基金项目: 复旦大学专用集成电路与系统图像重点实验室开放课题资助项目.
作者简介: 孟军(1975—),男,博士生; 魏同立(联系人),教授,博士生导师,weitl@seu.edu.cn.
更新日期/Last Update: 2002-11-20