[1]陈阳.新的独立性度量及其在混沌信号分析中的应用[J].东南大学学报(自然科学版),2003,33(1):13-18.[doi:10.3969/j.issn.1001-0505.2003.01.004]
 Chen Yang.New independence measures and its application to chaotic signal analysis[J].Journal of Southeast University (Natural Science Edition),2003,33(1):13-18.[doi:10.3969/j.issn.1001-0505.2003.01.004]
点击复制

新的独立性度量及其在混沌信号分析中的应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
33
期数:
2003年第1期
页码:
13-18
栏目:
数学、物理学、力学
出版日期:
2003-01-20

文章信息/Info

Title:
New independence measures and its application to chaotic signal analysis
作者:
陈阳
东南大学无线电工程系,南京 210096
Author(s):
Chen Yang
Department of Radio Engineering, Southeast University, Nanjing 210096, China
关键词:
混沌 独立性 延迟重构 奇异吸引子
Keywords:
chaos independence delay reconstruction strange attractor
分类号:
O415
DOI:
10.3969/j.issn.1001-0505.2003.01.004
摘要:
发现独立性可用一种简便的数格子方法估计,据此提出了“占格率”这一全新的独立性度量.接着又提出了一类无穷多种独立性度量——准熵,它们将变量经分布函数变换后量化,再用凸函数对其联合概率的均匀性进行度量.占格率的数学期望也是一种准熵.此外,还提出了广义互信息及其递归算法,将传统的互信息推广到一类无穷多种独立性度量.上述新度量对连续变量的分布不作先验假设,而是从样本中得出分布函数值的无偏估计,因此适合于根据观测值估计任意连续分布变量的独立性.本文还将新度量用于混沌信号分析,表明它们都是在经典的互信息之外的奇异吸引子重构时延的好的选取准则.并且指出Fraser和Swinney提出的著名的互信息递归算法是本文提出的广义互信息递归算法的一个特例.
Abstract:
Independence can be estimated conveniently by “counting grid-boxes” and thus a novel independence measure named “grid occupancy(GO)” is proposed. Then a class of infinitely many independence measures named quasi-entropy(QE)is put forward. QE uses convex functions to evaluate the uniformity of the joint probability obtained by transforming and then quantizing variables through their distribution functions respectively. Interestingly, the expectation of GO is also a kind of QE. Moreover, the generalized mutual information(GMI)and a recursive algorithm for computing GMI are proposed, by which the traditional mutual information(MI)is generalized to a class of infinitely many independence measures. These new measures do not make priori assumptions on the distributions of continuous variables. Instead, they use unbiased estimates of the values of distribution functions obtained from the samples. Therefore, they are well suited for estimating from observations the independence of variables with arbitrary continuous distributions. These new measures are also applied to chaotic signal analysis. They are shown to be good criteria beyond the classical MI for choosing delay in strange attractor reconstruction. It is also noted that the well-known recursive algorithm for computing MI by Fraser and Swinney is a special case of the recursive algorithm for computing GMI proposed in this paper.

参考文献/References:

[1] Takens F.Detecting strange attractors in turbulence [A].In:Warwick 1980 Lecture Notes in Math[C].Berlin:Springer,1981,898:366-381.
[2] Longstaff M G,Heath R A.A nonlinear analysis of the temporal characteristics of handwriting [J]. Human Movement Science,1999,18:485-524.
[3] Chen Y.New methods for measuring independence with an application to chaotic systems [A].In:NOLTA 2002 [C].Xi’an,2002.523-526.
[4] 陈阳.盲信息提取理论与方法研究[D].南京:东南大学无线电工程系,2001.
[5] Chen Y,He Z.A new method for blind source separation [A].In:ICONIP 2001 [C].Shanghai:Fudan Univ Press,2001,2:1006-1011.
[6] Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutual information [J].Physical Review A,1986,33(2):1134-1140.
[7] Rossler O E.An equation for continuous chaos [J].Physics Letters A,1976,57(5):397-398.
[8] Xu J,Liu Z,Liu R,et al.Information transmission in human cerebral cortex [J].Physica D,1997,106:363-374.

相似文献/References:

[1]颜森林.双环掺铒光纤激光器混沌反相位相移同步控制[J].东南大学学报(自然科学版),2004,34(5):578.[doi:10.3969/j.issn.1001-0505.2004.05.004]
 Yan Senlin.Study on controlling chaos synchronization by reverse-phase-shift in dual-ring erbium-doped fiber lasers[J].Journal of Southeast University (Natural Science Edition),2004,34(1):578.[doi:10.3969/j.issn.1001-0505.2004.05.004]
[2]胡文,包伯成,张弓,等.基于混沌同步的线性卷积系统辨识[J].东南大学学报(自然科学版),2010,40(6):1140.[doi:10.3969/j.issn.1001-0505.2010.06.003]
 Hu Wen,Bao Bocheng,et al.Chaos synchronization based linear convolution systems identification[J].Journal of Southeast University (Natural Science Edition),2010,40(1):1140.[doi:10.3969/j.issn.1001-0505.2010.06.003]
[3]黄晨,陈龙,袁朝春,等.模型参数摄动下的车辆侧向动力学混沌研究[J].东南大学学报(自然科学版),2012,42(6):1111.[doi:10.3969/j.issn.1001-0505.2012.06.017]
 Huang Chen,Chen Long,Yuan Chaochun,et al.Chaos study of vehicle lateral dynamics based on perturbation parameter[J].Journal of Southeast University (Natural Science Edition),2012,42(1):1111.[doi:10.3969/j.issn.1001-0505.2012.06.017]
[4]张毅锋,何振亚.一维双向耦合映象网络及其应用[J].东南大学学报(自然科学版),1998,28(1):12.[doi:10.3969/j.issn.1001-0505.1998.01.003]
 Zhang Yifeng,He Zhenya.One Dimensional Two Way Coupled Map Network With Applications[J].Journal of Southeast University (Natural Science Edition),1998,28(1):12.[doi:10.3969/j.issn.1001-0505.1998.01.003]
[5]卢宏涛,何振亚.用非反馈法控制非自治细胞神经网络中的混沌[J].东南大学学报(自然科学版),1996,26(4):8.[doi:10.3969/j.issn.1001-0505.1996.04.002]
 Lu Hongtao,He Zhenya.Using Nonfeedback Method to Control Chaos in Nonautonomous Cellular Neural Networks[J].Journal of Southeast University (Natural Science Edition),1996,26(1):8.[doi:10.3969/j.issn.1001-0505.1996.04.002]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金青年科学基金资助项目(60202014).
作者简介: 陈阳(1975—),男,博士后,cheny@seu.edu.cn.
更新日期/Last Update: 2003-01-20