[1]杨决宽,陈云飞,颜景平.超薄氩膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(3):303-306.[doi:10.3969/j.issn.1001-0505.2003.03.014]
 Yang Juekuan,Chen Yunfei,Yan Jingping.Molecular dynamics simulation of thermal conductivity of argon thin film[J].Journal of Southeast University (Natural Science Edition),2003,33(3):303-306.[doi:10.3969/j.issn.1001-0505.2003.03.014]
点击复制

超薄氩膜热传导的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
33
期数:
2003年第3期
页码:
303-306
栏目:
能源与动力工程
出版日期:
2003-05-20

文章信息/Info

Title:
Molecular dynamics simulation of thermal conductivity of argon thin film
作者:
杨决宽1 陈云飞12 颜景平1
1 东南大学机械工程系,南京 210096; 2 东南大学MEMS教育部重点实验室,南京 210096
Author(s):
Yang Juekuan1 Chen Yunfei12 Yan Jingping1
1 Department of Mechanical Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
导热系数 分子动力学 微尺度热传导 薄膜
Keywords:
thermal conductivity molecular dynamics microscale heat transfer thin films
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2003.03.014
摘要:
采用基于经典理论的平衡态分子动力学(EMD)方法,在无量子化修正的条件下,计算了固态氩(Ar)在低于其Debye温度(92 K)下的导热系数.温度在20 K以上时,模拟结果和实验值吻合较好,说明固态Ar的量子化效应对其热传导性能影响不大,温度低于20 K时,由于模拟区域对长波声子的裁剪作用使得模拟结果比实验值低.在此基础上,使用经典分子动力学基于三向、两向周期性边界条件的各向异性非平衡态薄膜模型,模拟了超薄Ar膜在40 K的导热系数,2种模型给出了具有相同变化趋势的薄膜热传导特性曲线,即:随着膜厚的增加,导热系数增大,且模拟结果同模拟区域横截面大小无关.在相同条件下,2种模型得到的氩膜导热系数相差10%左右.
Abstract:
Thermal conductivities of bulk argon below its Debye temperature are calculated by equilibrium molecular dynamics(EMD)simulation method without any correction for quantum effects. The classical molecular dynamics(MD)model gives a fair approximation of thermal conductivities to the experimental data above 20 K. This means that the quantum effects on thermal conductivity are relatively small. When the temperature is below 20 K, the MD results are lower than the experimental data due to the frequency cutoff of phonons spectra imposed by the simulation domain. Inhomogeneous non-equilibrium molecular dynamics(NEMD)simulation models with three or two direction periodic condition are used to study the thermal conductivity of argon thin film. Simulation results of the two models give similar characteristic curves of the thin film thermal conductivities, that is, with the increase of thickness, the thermal conductivity of thin film increases, and the MD result is independent of the cross-sectional area. The difference between the results produced by the two NEMD models under the same initial parameters is about 10 percent.

参考文献/References:

[1] Chen G,Shakouri A.Heat transfer in nanostructures for solid-state energy conversion[J]. Journal of Heat Transfer, 2002,124:242-252.
[2] Balandin A A.Nanoscale thermal management[J]. IEEE Potentials,2002,21:11-15.
[3] Chou F C,Lukes J R,Liang X G,et al.Molecular dynamics in microscale thermophysical engineering [J].Annual Review of Heat Transfer,1999,10:141-176.
[4] 冯晓利,李志信,过增元.导热系数分子动力学模拟及相关问题的探讨 [J].工程热物理学报,2001,22:195-198.
  Feng Xiaoli,Li Zhixin,Guo Zengyuan.Molecular dynamics study on thermal conductivity and discussion on some related topics [J].Journal of Engineering Thermophysics,2001,22:195-198.(in Chinese)
[5] Kaburaki H,Li J,Sidney Yip.Thermal conductivity of solid argon by classical molecular dynamics[J].Materials Research Society Symposium Proceeding, 1998,538:503-508.
[6] Lukes J R,Li D Y,Liang X G,et al.Molecular dynamics study of solid thin-film thermal conductivity[J]. Journal of Heat Transfer, 2000,122:536-543.
[7] 冯晓利,李志信,梁新刚,等.纳米薄膜导热系数的分子动力学模拟 [J].科学通报,2000,45:2113-2117.
  Feng Xiaoli,Li Zhixin,Liang Xingang,et al.Molecular dynamics study of nanoscale thin-film thermal conductivity [J]. Chinese Science Bulletin,2000, 45:2113-2117.(in Chinese)
[8] Allen M P,Tildesley D J.Computer simulation of liquids [M].Oxford:Clarendon Press,1987.9-50.
[9] Rapaport D C.The art of molecular dynamics simulation [M].Cambridge:University Press,1995.50-118.
[10] Mountain R D,MacDonald R A.Thermal conductivity of crystals:a molecular—dynamics study of heat flow in a two-dimensional crystal [J].Physical Review B,1983,28:3022-3025.
[11] Volz S G,Chen G.Molecular-dynamics simulation of thermal conductivity of silicon crystals [J]. Physical Review B,2000,61:2651-2656.
[12] Christen D K,Pollack G L.Thermal conductivity of solid argon [J]. Physical Review B,1975,12:3380-3391.

相似文献/References:

[1]魏志勇,毕可东,陈云飞.石墨烯纳米带热导率的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(2):306.[doi:10.3969/j.issn.1001-0505.2010.02.017]
 Wei Zhiyong,Bi Kedong,Chen Yunfei.Thermal conductivity of graphene nanoribbons simulated by molecular dynamics[J].Journal of Southeast University (Natural Science Edition),2010,40(3):306.[doi:10.3969/j.issn.1001-0505.2010.02.017]
[2]毕可东,陈云飞,杨决宽,等.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]
 Bi Kedong,Chen Yunfei,Yang Juekuan,et al.Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes with different structures[J].Journal of Southeast University (Natural Science Edition),2006,36(3):420.[doi:10.3969/j.issn.1001-0505.2006.03.018]
[3]汪国栋,杨决宽,陈云飞.硅纳米线热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
 Wang Guodong,Yang Juekuan,Chen Yunfei.Molecular dynamics simulation of thermal conductivity of Si nanowires[J].Journal of Southeast University (Natural Science Edition),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
[4]庞麓呜,张正荣,陈善年,等.水套球型导热装置热工性能分析——兼谈南工Ⅰ型导热装置[J].东南大学学报(自然科学版),1979,9(3):76.[doi:10.3969/j.issn.1001-0505.1979.03.007]
 Pang Lu-Ming,Zhang Zheng-Rong,Chen Shang-Nian,et al.An Analysis of Thermal Characteristics of the Water-jacketed Spherical Thermal Conductivity Test Apparatus[J].Journal of Southeast University (Natural Science Edition),1979,9(3):76.[doi:10.3969/j.issn.1001-0505.1979.03.007]
[5]张潇丹,包永强,奚吉,等.基于MD-CM-SFLA神经网络的耳语音情感识别[J].东南大学学报(自然科学版),2012,42(5):848.[doi:10.3969/j.issn.1001-0505.2012.05.010]
 Zhang Xiaodan,Bao Yongqiang,Xi Ji,et al.Whispered speech emotion recognition based on MD-CM-SFLA neural network[J].Journal of Southeast University (Natural Science Edition),2012,42(3):848.[doi:10.3969/j.issn.1001-0505.2012.05.010]
[6]陈慧,魏志勇,陈伟宇,等.掺杂硅纳米薄膜法向热导率的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(3):490.[doi:10.3969/j.issn.1001-0505.2017.03.013]
 Chen Hui,Wei Zhiyong,et al.Molecular dynamics simulation of out-of-plane thermal conductivity of doped silicon nanofilms[J].Journal of Southeast University (Natural Science Edition),2017,47(3):490.[doi:10.3969/j.issn.1001-0505.2017.03.013]
[7]陈俊,殷小晶,张倩倩,等.沥青内金属离子的水污特征及组分扩散的分子动力学模拟[J].东南大学学报(自然科学版),2017,47(4):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]
 Chen Jun,Yin Xiaojing,Zhang Qianqian,et al.Water quality degradation due to metal in asphalt and molecular dynamics simulation on SARA fraction diffusion[J].Journal of Southeast University (Natural Science Edition),2017,47(3):799.[doi:10.3969/j.issn.1001-0505.2017.04.026]
[8]毕可东,陈云飞,王玉娟,等.金刚石导热系数的各向同性分子动力学模拟[J].东南大学学报(自然科学版),2010,40(4):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
 Bi Kedong,Chen Yunfei,Wang Yujuan,et al.Homogeneous molecular dynamics simulation of thermal conductivity of diamond[J].Journal of Southeast University (Natural Science Edition),2010,40(3):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
[9]陈慧,陈云飞,陈敏华,等.填充氩后单壁碳纳米管的导热系数[J].东南大学学报(自然科学版),2006,36(3):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
 Chen Hui,Chen Yunfei,Chen Minhua,et al.Thermal conductivity of single-wall carbon nanotubes filled with argon[J].Journal of Southeast University (Natural Science Edition),2006,36(3):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
[10]杨决宽,唐明兵,钱瑞明,等.晶格失配对超晶格法向导热系数影响的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):427.[doi:10.3969/j.issn.1001-0505.2006.03.020]
 Yang Juekuan,Tang Mingbing,Qian Ruiming,et al.Molecular dynamics simulation of the influence of lattice mismatch on cross-plane superlattice thermal conductivity[J].Journal of Southeast University (Natural Science Edition),2006,36(3):427.[doi:10.3969/j.issn.1001-0505.2006.03.020]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(50276011).
作者简介: 杨决宽(1972—),男,博士生; 陈云飞(联系人),男,教授,yunfeichen@seu.edu.cn.
更新日期/Last Update: 2003-05-20