[1]徐泽水,吴应宇,达庆利.一种改进的行和归一化排序方法[J].东南大学学报(自然科学版),2004,34(4):518-522.[doi:10.3969/j.issn.1001-0505.2004.04.022]
 Xu Zeshui,Wu Yingyu,Da Qingli.Improved normalizing rank aggregation method for priorities[J].Journal of Southeast University (Natural Science Edition),2004,34(4):518-522.[doi:10.3969/j.issn.1001-0505.2004.04.022]
点击复制

一种改进的行和归一化排序方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第4期
页码:
518-522
栏目:
经济与管理
出版日期:
2004-07-20

文章信息/Info

Title:
Improved normalizing rank aggregation method for priorities
作者:
徐泽水 吴应宇 达庆利
东南大学经济管理学院, 南京 210096
Author(s):
Xu Zeshui Wu Yingyu Da Qingli
College of Economics and Management, Southeast University, Nanjing 210096, China
关键词:
层次分析法 行和归一化排序方法 排序
Keywords:
analytic hierarchy process normalizing rank aggregation method priority
分类号:
C934
DOI:
10.3969/j.issn.1001-0505.2004.04.022
摘要:
提出了一种改进的行和归一化排序方法(INRAM), 从保序性、置换不变性、相容性和累积优势度等方面对该方法的合理性进行了研究, 并且利用互补判断矩阵和互反判断矩阵之间的转换公式, 给出了相应的求解互补判断矩阵排序向量的算法, 从而丰富和发展了互反和互补判断矩阵的排序理论. 最后,通过算例将NRAM法和INRAM法与特征根排序方法(EM)及对数最小二乘法(LLSM)作了对比分析. 数值结果表明: INRAM法不仅简洁易行, 而且与EM 法的排序结果完全一致, 故能较好地揭示方案的真实排序.
Abstract:
An improved normalizing rank aggregation method(INRAM)for priorities of reciprocal judgment matrices is presented and some of its desirable properties, such as rank preservation, compatibility, cumulative dominance, are studied. By using the transformation formulas of reciprocal judgment matrix and complementary judgment matrix, the corresponding method for priorities of complementary judgment matrix is also given. The priority theory of reciprocal judgment matrices and complementary judgment matrices is thus developed. Finally, the normalizing rank aggregation method(NRAM)and the INRAM are compared with the eigenvector priority method(EM)and the logarithmic least squares method(LLSM)through some numerical examples. The numerical results show that the INRAM is simple, feasible and can get the same priorities as that of the EM. Thus it can get underlying priorities for alternatives.

参考文献/References:

[1] Saaty T L, Vargas L G.The logic of priorities [M].Dordrecht:Kluwer Nijhoff Publishing,1982.10-50.
[2] Saaty T L. Eigenvector and logarithmic least squares [J].European Journal of Operational Research,1990,48(1):156-160.
[3] 徐泽水. AHP中两类标度法的关系研究[J].系统工程理论与实践,1999,19(7):97-101.
  Xu Zeshui.Study on the relation between two classes of scales in AHP [J]. Systems Engineering—Theory & Practice, 1999,19(7):97-101.(in Chinese)
[4] Saaty T L. The analytic hierarchy process [M].New York:McGraw-Hill,1980.1-45.
[5] 王莲芬, 许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.205-219.
[6] 贾兰香, 陈宝谦.层次分析决策方法排序问题的一般性质[J].南开大学学报,1991(2):19-28.
  Jia Lanxiang,Chen Baoqian.General properties of the priority methods in the analytic hierarchy process [J]. Acta Scientiarum Naturalium Universitatis Nan Kaiensis, 1991(2):19-28.(in Chinese)
[7] Orlovsky S A. Decision-making with a fuzzy preference relation [J].Fuzzy Sets and Systems, 1978,1(3):155-167.
[8] Nurmi H. Approaches to collective decision making with fuzzy preference relations [J]. Fuzzy Sets and Systems,1981,6(3):249-259.
[9] Tanino T. Fuzzy preference orderings in group decision making [J]. Fuzzy Sets and Systems, 1984,12(2):117-131.
[10] Chiclana F, Herrera F,Herrera-Viedma E.Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations [J].Fuzzy Sets and Systems, 1998,97(1):33-48.
[11] 徐泽水. 模糊互补判断矩阵排序的一种算法[J].系统工程学报,2001,16(4):311-314.
  Xu Zeshui.Algorithm for priority of fuzzy complementary judgement matrix [J].Journal of Systems Engineering,2001,16(4):311-314.(in Chinese)
[12] Lipovetsky S, Michael Conklin M.Robust estimation of priorities in the AHP [J]. European Journal of Operational Research, 2002,137(1):110-122.
[13] 徐泽水. 多属性决策中四类判断信息的一种集成方法[J].系统工程理论与实践,2002,22(11):117-120.
  Xu Zeshui.An approach to integrating four types of preference information in multi-criterion decision making [J].Systems Engineering—Theory & Practice,2002,22(11):117-120.(in Chinese)
[14] Xu Z S, Da Q L.The uncertain OWA operator [J].International Journal of Intelligent Systems, 2002,17(6):569-575.
[15] Xu Z S, Da Q L.An approach to improving consistency of fuzzy preference matrix [J]. Fuzzy Optimization and Decision Making, 2003,2(1):3-12.
[16] Xu Z S. Two methods for ranking alternatives in group decision-making with different preference information [J].Information:an International Journal, 2003,6(4):389-394.
[17] Xu Z S, Da Q L.An uncertain ordered weighted geometric(UOWG)operator and its application [J].Information:an International Journal, 2004,7(2):175-182.
[18] 徐泽水. 不确定多属性决策方法及应用[M].北京:清华大学出版社,2004.43-86.

相似文献/References:

[1]陆金伟,达庆利.基于最小矩阵距离准则的一种群体决策方法[J].东南大学学报(自然科学版),1998,28(6):79.[doi:10.3969/j.issn.1001-0505.1998.06.016]
 Lu Jinwei,A Group Decision Making Method Based on the Minimum Matrix Distance Criterion[J].Journal of Southeast University (Natural Science Edition),1998,28(4):79.[doi:10.3969/j.issn.1001-0505.1998.06.016]
[2]陆金伟,达庆利.用于群体决策的一种统计迭代方法[J].东南大学学报(自然科学版),1999,29(6):89.[doi:10.3969/j.issn.1001-0505.1999.06.020]
 Lu Jinwei,Da Qingli.A Statistical and Iterative Method for Group Decision Making[J].Journal of Southeast University (Natural Science Edition),1999,29(4):89.[doi:10.3969/j.issn.1001-0505.1999.06.020]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(79970094)、中国博士后科学基金资助项目(2003034366).
作者简介: 徐泽水(1968—), 男, 博士, 副教授; 达庆利(联系人), 教授, 博士生导师, dql@public1.ptt.js.cn.
更新日期/Last Update: 2004-07-20