[1]陈华友,刘春林.群决策中基于不同偏好信息的相对熵集成方法[J].东南大学学报(自然科学版),2005,35(2):311-315.[doi:10.3969/j.issn.1001-0505.2005.02.033]
 Chen Huayou,Liu Chunlin.Relative entropy aggregation method in group decision making based on different types of preference information[J].Journal of Southeast University (Natural Science Edition),2005,35(2):311-315.[doi:10.3969/j.issn.1001-0505.2005.02.033]
点击复制

群决策中基于不同偏好信息的相对熵集成方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第2期
页码:
311-315
栏目:
经济与管理
出版日期:
2005-03-20

文章信息/Info

Title:
Relative entropy aggregation method in group decision making based on different types of preference information
作者:
陈华友12 刘春林3
1 南京大学工程管理学院, 南京 210093; 2 安徽大学数学系, 合肥 230039; 3 南京大学商学院, 南京 210093
Author(s):
Chen Huayou12 Liu Chunlin3
1 School of Management Science and Engineering, Nanjing University, Nanjing 210093, China
2 Department of Mathematics, Anhui University, Heifei 230039, China
3 Business School, Nanjing University, Nanjing 210093, China
关键词:
群决策 相对熵 偏好信息 一致化 最优化模型
Keywords:
group decision making relative entropy preference information uniformity optimal model
分类号:
N945.25
DOI:
10.3969/j.issn.1001-0505.2005.02.033
摘要:
研究了基于不同形式偏好信息的群决策问题.在群决策中专家根据个人的偏好,常常对决策方案集给出4种不同形式的偏好信息,包括直接反映决策方案优劣次序的序关系值和效用值,以及2个决策方案成对比较互反判断矩阵和模糊互补判断矩阵.首先给出了序关系值、互反判断矩阵和模糊互补判断矩阵3种偏好信息均转化为效用值形式的计算公式, 然后从相对熵的概念出发,提出了一种相对熵最优化的集成模型,给出了模型的解.最后进行了2个实例分析,结果表明所提出集成方法是有效的.
Abstract:
The problem of group decision making based on different types of preference information is studied. Experts usually provide four forms of preference information to the set of alternatives by their personalities during group decision making, which includes preference ordering and utility value giving the orders of alternatives directly, reciprocal judgement matrix and fuzzy complementary judgement matrix obtained by pair comparison between two alternatives.First the computational formulas are given to uniform three types of preference information, i.e. preference ordering, reciprocal judgement matrix and fuzzy complementary judgement matrix, into the form of utility value. Then a relative entropy aggregation optimal model is proposed from the concept of relative entropy, and the solution of this model is also given. Finally two examples are analyzed to show the effectiveness of this model.

参考文献/References:

[1] 肖四汉,樊治平,王梦光.群决策中两类偏好信息——AHP判断矩阵和模糊偏好关系矩阵的一致化方法[J].系统工程学报,2002,17(1):82-86.
  Xiao Sihan,Fan Zhiping,Wang Mengguang.Uniform approach to two forms of preference information — AHP judgement matrices and fuzzy preference relation matrices in group decision making [J].Journal of Systems Engineering,2002,17(1):82-86.(in Chinese)
[2] Chiclana F,Herrera F,Herrera-Viedma E.Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations [J]. Fuzzy Sets and Systems, 1998,97:33-48.
[3] Herrera F,Herrera-Viedma E,Chiclana F.Multiperson decision-making based on multiplicative preference relations [J]. European Journal of Operational Research, 2001,129(2):372-385.
[4] Chiclana F,Herrera F,Herrera-Viedma E.Integrating multiplicative preference relations in a multipurpose decision-making based on fuzzy preference relations[J]. Fuzzy Sets and Systems, 2001,122:277-291.
[5] 徐泽水.一种基于互反判断矩阵的多属性决策信息集成方法 [J].系统工程,2002,20(2):93-96.
  Xu Zeshui.A method for integrating four types of preference information in multi-attribute decision making based on reciprocal judgement matrices[J]. Systems Engineering, 2002,20(2):93-96.(in Chinese)
[6] 徐泽水.多属性决策中四类偏好信息的一种集成途径[J].系统工程理论与实践,2002,22(11):117-120.
  Xu Zeshui.An approach to integrating four types of preference information in multi-attribute decision making [J].Systems Engineering-Theory and Practice, 2002,22(11):117-120.(in Chinese)
[7] 樊治平,姜艳萍.基于OWG算子的不同形式偏好信息的群决策方法[J].管理科学学报,2003,6(1):32-36.
  Fan Zhiping,Jiang Yanping.Approch to group decision making with different forms of preference information based on OWG operators[J]. Journal of Management Sciences in China,2003,6(1):32-36.(in Chinese)
[8] 肖四汉,樊治平,王梦光.群决策中两类判断矩阵的一种集成方法[J].控制与决策,2001,16(5):569-572.
  Xiao Sihan,Fan Zhiping,Wang Mengguang.Integrated approach to two judgement matrices in group decision making[J].Control and Decision, 2001,16(5):569-572.(in Chinese)
[9] 樊治平,姜艳萍.基于OWA算子的不同形式偏好信息的群决策方法[J].控制与决策,2001(增刊):749-752.
  Fan Zhiping,Jiang Yanping.Approch to group decision making with different forms of preference information based on OWA operators[J]. Control and Decision,2001(Suppl.):749-752.(in Chinese)
[10] 樊治平,姜艳萍.模糊判断矩阵排序方法研究的综述 [J].系统工程,2001,19(5):12-18.
  Fan Zhiping,Jiang Yanping.An overview on ranking methods of fuzzy judgement matrix [J]. Systems Engineering, 2001,19(5):12-18.(in Chinese)
[11] 魏存平,邱菀华,杨继平.群决策问题的REM集结模型[J].系统工程理论与实践,1999,19(8):38-41.
  Wei Cunping,Qiu Wanhua,Yang Jiping.Minimum relative entropy aggregation model on group decision making [J].Systems Engineering-Theory and Practice, 1999,19(8):38-41.(in Chinese)
[12] 邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2002.290-380.
[13] Saaty T L.The analytic hierarchy process[M].New York:McGraw-Hill,1980.80-210.
[14] 徐泽水.模糊互补判断矩阵排序的一种算法[J].系统工程学报,2001,16(4):311-314.
  Xu Zeshui.Algorithm for priority of fuzzy complementary judgement matrix [J]. Journal of Systems Engineering, 2001,16(4):311-314.(in Chinese)

相似文献/References:

[1]刘光杰,林嵘,戴跃伟,等.用于EZW编码图像中的安全隐写算法[J].东南大学学报(自然科学版),2008,38(6):975.[doi:10.3969/j.issn.1001-0505.2008.06.008]
 Liu Guangjie,Lin Rong,Dai Yuewei,et al.Secure steganographical algorithm for EZW-encoded images[J].Journal of Southeast University (Natural Science Edition),2008,38(2):975.[doi:10.3969/j.issn.1001-0505.2008.06.008]
[2]程光,陈玉祥.基于支持向量机的加密流量识别方法[J].东南大学学报(自然科学版),2017,47(4):655.[doi:10.3969/j.issn.1001-0505.2017.04.005]
 Cheng Guang,Chen Yuxiang.Identification method of encrypted traffic based on support vector machine[J].Journal of Southeast University (Natural Science Edition),2017,47(2):655.[doi:10.3969/j.issn.1001-0505.2017.04.005]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(70101003)、中国博士后科学基金资助项目(2004035209).
作者简介: 陈华友(1969—),男,博士,教授,huayouc@nju.edu.cn.
更新日期/Last Update: 2005-03-20