[1]杨决宽,唐明兵,钱瑞明,等.晶格失配对超晶格法向导热系数影响的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):427-430.[doi:10.3969/j.issn.1001-0505.2006.03.020]
 Yang Juekuan,Tang Mingbing,Qian Ruiming,et al.Molecular dynamics simulation of the influence of lattice mismatch on cross-plane superlattice thermal conductivity[J].Journal of Southeast University (Natural Science Edition),2006,36(3):427-430.[doi:10.3969/j.issn.1001-0505.2006.03.020]
点击复制

晶格失配对超晶格法向导热系数影响的分子动力学模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第3期
页码:
427-430
栏目:
能源与动力工程
出版日期:
2006-05-20

文章信息/Info

Title:
Molecular dynamics simulation of the influence of lattice mismatch on cross-plane superlattice thermal conductivity
作者:
杨决宽1 唐明兵1 钱瑞明1 陈云飞12
1 东南大学机械工程学院, 南京 210096; 2 东南大学MEMS教育部重点实验室, 南京 210096
Author(s):
Yang Juekuan1 Tang Mingbing1 Qian Ruiming1 Chen Yunfei12
1 College of Mechanical Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
导热系数 超晶格 晶格失配 分子动力学
Keywords:
thermal conductivity superlattice lattice mismatch molecular dynamics
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2006.03.020
摘要:
采用非平衡态分子动力学方法模拟了超晶格的法向导热系数随周期长度的变化关系.模拟结果表明,在晶格匹配的超晶格中,当周期长度同声子平均自由程相当时,超晶格导热系数将出现最小值.而对于具有4%晶格失配的超晶格模拟结果却表明,超晶格导热系数随周期长度的增大而单调上升.这一研究结果表明,材料的晶格失配是大多数实验研究中没有发现超晶格最小导热系数的主要原因.
Abstract:
The dependence of superlattice thermal conductivity on period length is investigated by nonequilibrium molecular dynamics simulation. For perfectly lattice-matched superlattices, a minimum thermal conductivity is observed when the period length is of the order of the effective phonon mean free path. However, the simulation results of the superlattice with 4% lattice mismatch show that the thermal conductivity increases monotonically with the period length. These results indicate that lattice mismatch is the main reason why minimum thermal conductivity has not been observed in a large number of experimental studies.

参考文献/References:

[1] Balandin A A.Nanoscale thermal management[J]. IEEE Potentials,2002,21(1):11-15.
[2] Packan P A.Pushing the limits[J].Science,1999,285(5436):2079-2081.
[3] 过增元.国际传热研究前沿——微细尺度传热[J].力学进展,2000,30(1):1-6.
  Guo Zengyuan.Frontier of heat transfer—mircoscale heat transfer [J]. Advances in Mechanics,2000,30(1):1-6.(in Chinese)
[4] 徐德胜.半导体制冷与应用技术[M].上海:上海交通大学出版社,1992:1-50.
[5] Mahan G,Sales B,Sharp J.Thermoelectric materials:new approaches to an old problem[J]. Physics Today, 1997,50(3):42-47.
[6] Hicks L D,Dresselhaus M S.Effect of quantum-well structures on the thermoelectric figure of merit[J].Physical Review B,1993,47(19):12727-12731.
[7] Capinski W S,Maris H J.Improved apparatus for picosecond pump-and-probe optical measurements[J].Review of Scientific Instruments,1996,67(8):2720-2726.
[8] Capinski W S,Cardona M,Katzer D S.Thermal conductivity of GaAs/AlAs superlattices[J].Physica B,1999,263-264:530-532.
[9] Huxtable S T,Abramson A R,Tien Chang-Lin.Thermal conductivity of Si/Ge and SiGe/SiGe superlattices[J]. Applied Physics Letters,2002,80(10):1737-1739.
[10] Venkatasubramanian R.Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J].Physical Review B,2000,61(4):3091-3097.
[11] Daly B C,Maris H J,Imamura K.Molecular dynamics calculation of thermal conductivity of superlattices[J].Physical Review B,2002,66(2):024301(1-7).
[12] Simkin M V,Mahan G D.Minimum thermal conductivity of superlattices[J]. Physical Review Letters,2000,84(5):927-930.
[13] Mountain R D,MacDonald R A.Thermal conductivity of crystal:a molecular-dynamics study of heat flow in a two-dimensional crystal[J].Physical Review B, 1983,28(6):3022-3025.
[14] Allen M P,Tildesley D J.Computer simulation of liquids[M].Oxford:Clarendon Press,1987:6-84.
[15] Hafskjold B,Ratkje S K.Criteria for local equilibrium in a system with transport of heat and mass[J].Journal of Statistical Physics,1995,78(1,2):463-494.
[16] 杨决宽,陈云飞,颜景平.超薄氩膜热传导的分子动力学模拟[J].东南大学学报:自然科学版,2003,33(3):303-306.
  Yang Juekuan,Chen Yunfei,Yan Jingping.Molecular dynamic simulation of thermal conductivity of argon thin film [J]. Journal of Southeast University(Nature Science Edition),2003,33(3):303-306.(in Chinese)
[17] Schelling P K,Phillpot S R,Keblinski P.Comparison of atomic-level simulation method for computing thermal conductivity[J].Physical Review B,2002,65(14):144306(12).
[18] Yang Juekuan,Chen Yunfei,Yan Jinping.Molecular dynamics simulation of thermal conductivities of superlattice nanowires[J]. Science in China(Series E),2003,46(3):278-286.

相似文献/References:

[1]陈云飞.基于微纳结构的制冷器[J].东南大学学报(自然科学版),2006,36(3):356.[doi:10.3969/j.issn.1001-0505.2006.03.004]
 Chen Yunfei.Microcooler based on micro-nanostructures[J].Journal of Southeast University (Natural Science Edition),2006,36(3):356.[doi:10.3969/j.issn.1001-0505.2006.03.004]
[2]吴勇华,杨决宽,陈云飞,等.超晶格薄膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(4):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
 Wu Yonghua,Yang Juekuan,Chen Yunfei,et al.Molecular dynamics simulation of superlattice thermal conductivities[J].Journal of Southeast University (Natural Science Edition),2003,33(3):468.[doi:10.3969/j.issn.1001-0505.2003.04.021]
[3]毕可东,陈云飞,王玉娟,等.金刚石导热系数的各向同性分子动力学模拟[J].东南大学学报(自然科学版),2010,40(4):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
 Bi Kedong,Chen Yunfei,Wang Yujuan,et al.Homogeneous molecular dynamics simulation of thermal conductivity of diamond[J].Journal of Southeast University (Natural Science Edition),2010,40(3):746.[doi:10.3969/j.issn.1001-0505.2010.04.016]
[4]陈慧,陈云飞,陈敏华,等.填充氩后单壁碳纳米管的导热系数[J].东南大学学报(自然科学版),2006,36(3):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
 Chen Hui,Chen Yunfei,Chen Minhua,et al.Thermal conductivity of single-wall carbon nanotubes filled with argon[J].Journal of Southeast University (Natural Science Edition),2006,36(3):416.[doi:10.3969/j.issn.1001-0505.2006.03.017]
[5]汪国栋,杨决宽,陈云飞.硅纳米线热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
 Wang Guodong,Yang Juekuan,Chen Yunfei.Molecular dynamics simulation of thermal conductivity of Si nanowires[J].Journal of Southeast University (Natural Science Edition),2006,36(3):423.[doi:10.3969/j.issn.1001-0505.2006.03.019]
[6]杨决宽,陈云飞,颜景平.超薄氩膜热传导的分子动力学模拟[J].东南大学学报(自然科学版),2003,33(3):303.[doi:10.3969/j.issn.1001-0505.2003.03.014]
 Yang Juekuan,Chen Yunfei,Yan Jingping.Molecular dynamics simulation of thermal conductivity of argon thin film[J].Journal of Southeast University (Natural Science Edition),2003,33(3):303.[doi:10.3969/j.issn.1001-0505.2003.03.014]
[7]庞麓呜,张正荣,陈善年,等.水套球型导热装置热工性能分析——兼谈南工Ⅰ型导热装置[J].东南大学学报(自然科学版),1979,9(3):76.[doi:10.3969/j.issn.1001-0505.1979.03.007]
 Pang Lu-Ming,Zhang Zheng-Rong,Chen Shang-Nian,et al.An Analysis of Thermal Characteristics of the Water-jacketed Spherical Thermal Conductivity Test Apparatus[J].Journal of Southeast University (Natural Science Edition),1979,9(3):76.[doi:10.3969/j.issn.1001-0505.1979.03.007]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(50475077, 50506008)、江苏省自然科学基金资助项目(BK2005063).
作者简介: 杨决宽(1972—),男,博士,讲师, yangjk@seu.edu.cn.
更新日期/Last Update: 2006-05-20