[1]沈建新,张运海,廖文和.基于复曲面的准分子激光屈光矫正计算模型[J].东南大学学报(自然科学版),2006,36(4):531-536.[doi:10.3969/j.issn.1001-0505.2006.04.008]
 Shen Jianxin,Zhang Yunhai,Liao Wenhe.Mathematical model based corneal toric surface for excimer laser refractive surgery[J].Journal of Southeast University (Natural Science Edition),2006,36(4):531-536.[doi:10.3969/j.issn.1001-0505.2006.04.008]
点击复制

基于复曲面的准分子激光屈光矫正计算模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第4期
页码:
531-536
栏目:
生物医学工程
出版日期:
2006-07-20

文章信息/Info

Title:
Mathematical model based corneal toric surface for excimer laser refractive surgery
作者:
沈建新 张运海 廖文和
南京航空航天大学机电学院, 南京 210016
Author(s):
Shen Jianxin Zhang Yunhai Liao Wenhe
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
数学模型 角膜 复曲面 屈光不正 准分子激光 角膜屈光手术 规则散光
Keywords:
mathematical model corneal toric surface refractive error excimer laser refractive surgery regular astigmatism
分类号:
R318;R779.6;TN305.7
DOI:
10.3969/j.issn.1001-0505.2006.04.008
摘要:
为了建立准分子激光屈光矫正计算模型来引导准分子激光屈光手术,根据角膜非球面的生理特征,将手术前角膜表面假设成在2个主径线上具有不同曲率半径的复曲面,在理论上建立屈光不正和角膜切削量的关系,按照规则散光的5种不同分类(研究复性近视散光、复性远视散光、单纯近视散光、单纯远视散光、混合散光的准分子激光切削数学模型)来计算准分子激光矫正屈光不正时角膜的切削量,达到矫正人眼规则散光的目的,经临床应用取得了良好效果.
Abstract:
The purpose of this research is to establish a mathematical model to determine corneal shape and apply that technique to excimer laser refractive surgery. Seeing that the corneal physiological surface is aspheric, the preoperative corneal shape can be approximated by toric surface with radii of curvature Rix, Riy. The relationship between refraction error and corneal ablation depth was deduced in theory. Various mathematical models which can be used for compound myopia astigmatism, compound hypermetropia astigmatism, simple myopia astigmatism, simple hypermetropia astigmatism, mixed astigmatism have been proposed. Clinic practice shows that the technique proposed can correct regular astigmatism and achieve satisfied results.

参考文献/References:

[1] Trokel S L,Srinivasan R,Braren B.Excimer laser surgery of the cornea[J]. Am J Ophthalmol,1983,96:710-715.
[2] Kellum K.Refractive surgery[J].The Ochsner Journal,2000,2(3):164-167.
[3] Gimbel H V,van Westenbrugge J A,Penno E E,et al.Simultaneous bilateral laser in situ keratomileusis:safety and efficacy[J].Ophthalmology,1999,106(8):1461-1468.
[4] Reviglio V E,Luna J D,Rodriguez M L,et al.Laser in situ keratomileus using the LaserSight 200 laser:results of 950 consecutive cases[J].Journal of Cataract & Refractive Surgery,1999,25(8):1062-1068.
[5] McDonald M B,Deitz M R,Frantz J M,et al.Photorefractive keratectomy for low-to-moderate myopia and astigmatism with a small-beam,tracker-directed excimer laser[J]. Ophthalmology,1999,106(8):1481-1488.
[6] Munnerlyn C R,Koons S J,Marshall J.Photorefractive keratectomy:a technique for laser refractive surgery[J].Journal of Cataract & Refractive Surgery,1988,14(1):46-52.
[7] Lieberman D M,Grierson J W.A mathematical model for laser in situ keratomileusis and photorefractive keratectomy[J].Journal of Cataract & Refractive Surgery,2000,26(3,4):177-186.
[8] Gatinel D,Hoang-Xuan T,Azar D T.Determination of corneal asphericity after myopia surgery with the excimer laser:a mathematical model [J].Investigative Ophthalmology and Visual Science,2001,42(8):1736-1742.
[9] Chang A W,Tsang A C,Contreras J E,et al.Corneal tissue ablation depth and the Munnerlyn formula[J].Journal of Cataract & Refractive Surgery,2003,29(6):1204-1210.
[10] 沈建新,周振江.屈光性近视远视矫正的角膜消融深度计算[J].中国生物医学工程学报,2005,24(4):461-467.
  Shen Jianxin,Zhou Zhenjiang.Corneal ablation depth of refractive myopia and hypermetropia correction[J].Chinese Journal of Biomedical Engineering,2005,24(4):461-467.(in Chinese)
[11] 徐广第.眼科屈光学.第2版[M].北京:军事医学科学出版社,2001:23.
[12] Vinciguerra P,Sborgia M,Epstein D,et al.Photorefractive keratectomy to correct myopic or hyperopic astigmatism with a cross-cylinder ablation[J].Journal of Refractive Surgery,1999,15(2):183-186.
[13] Kim W S,Jo J M.Corneal hydration affects ablation during laser in situ keratomileusis surgery[J].Cornea, 2001,20(4):394-397.

相似文献/References:

[1]李宝云,李瑞林.盒式录音机机芯走带系统数学模型的研究[J].东南大学学报(自然科学版),1986,16(3):43.[doi:10.3969/j.issn.1001-0505.1986.03.005]
 Li Baoyun Li Ruilin.A Study of Mathematical Model for Cassette Recorder Play System[J].Journal of Southeast University (Natural Science Edition),1986,16(4):43.[doi:10.3969/j.issn.1001-0505.1986.03.005]
[2]徐成威,于燕,谢文霞,等.无重力下油颗粒在纤维表面的形貌特征分析[J].东南大学学报(自然科学版),2020,50(3):516.[doi:10.3969/j.issn.1001-0505.2020.03.014]
 Xu Chengwei,Yu Yan,Xie Wenxia,et al.Analysis on shape characteristic of oil droplet on fiber without gravity[J].Journal of Southeast University (Natural Science Edition),2020,50(4):516.[doi:10.3969/j.issn.1001-0505.2020.03.014]

备注/Memo

备注/Memo:
基金项目: 江苏省"六大人才高峰"资助项目、 江苏省科技成果转化专项资金资助项目(BA2005025).
作者简介: 沈建新(1969—), 男, 博士, 教授, cadatc@nuaa.edu.cn.
更新日期/Last Update: 2006-07-20